Volatility Definition - Forexline

Consistently Profitable Trader in Less Than a Year

I just recently got into this subreddit to browse and pretty sure this post will get roasted but here goes.
I started learning forex using babypips around November 2019. Didn’t really take it seriously until I bought a few courses when COVID hit in March and really grinded and studied every day.
On this subreddit, I see a lot of advice to not pay for a course because “you can learn it for free” or you can “YouTube” it. And while that may be true, there’s SO much information online, and a lot of it isn’t good. As a newbie or even long time trader, you can get overwhelmed with BS and the endless amount of indicators and strategies. To each their own, but I believe you’re gonna pay the markets your tuition for learning somehow: either through a mentocourse or just losing all your $$$ to the markets. I did babypips, and while that info was useful, I would say it’s definitely NOT enough to become profitable.
In these past 6 months, I’ve lost and earned a lot. I can proudly say I consistently made 10k+ each month from July-Sept and it’s only going up from here. (I didn’t start with a 10k account either.) Im definitely in the green overall, passed and verified on an FTMO account, and been making around 3k+ each day these past few days (thank you volatility!).
Psychology is the hardest to overcome, but it’s doable. To all the newbies and traders struggling out there, it’s possible to become consistently profitable, don’t let anyone else tell you otherwise. and F the people who don’t believe in you. But to be fair, you have to have a passion for trading and put in the work. You can’t go into this just for the money. I love analyzing the charts and trading now. It’s changed my life.
If anyone has any questions, feel free to hit me up.
submitted by helpmechoooooseplz to Forex [link] [comments]

10 Secrets The Trading Industry Doesn’t Want You To Know About

Today’s lesson goes to be somewhat controversial and should ruffle some feathers. I shall blow wide open and debunk tons of the knowledge you've got presumably been exposed to the present far in your trading journey.
The average trader is out there walking through a confusing and conflicting maze of data from a spread of sources including; blogs, forums, broker websites, books, e-books, courses and YouTube videos.
With of these learning resources available there's naturally getting to be some excellent and a few very bad information, but actually , there just isn’t how for many aspiring traders to understand what to concentrate to, who to concentrate to, or what information is useful and what information is non-beneficial.
I’m not getting to pretend that there's how for an aspiring trader to filter this giant sea of data composed by of these resources and mentors out there, because there simply isn’t. knowledgeable trader with 10,000 hours of experience might stand an opportunity of deciding the great from the bad and therefore the valid from the invalid. However, you, the beginner or intermediate trader simply won’t possess that filtering ability yet.
Becoming ‘Non-Average’
As traders, we concede to our instinctive feelings of social trustworthiness supported what we see and listen to , often to our extreme detriment. we frequently tend to require a leap of religion with our mentors and have a habit of taking things said to us at face value. we would like to hold close information that resonates with us and is sensible to us, especially if it’s delivered by a well-known source that we've come to understand and trust.
The ‘average trader’s brain’ is usually trying to find a shortcut due to the overwhelming desire to form money and be free. The brain wants to urge a winning result immediately with the smallest amount amount of effort possible. If you would like to ever make it as a professional trader or investor, I suggest you are doing everything you'll to avoid thinking with the ‘average trader’s brain‘ and begin being ‘non-average’. meaning becoming far more aware, thinking outside the box more and questioning and filtering the knowledge you read and watch. most significantly , slowing everything all down!
This now begs the apparent question…how does one even know what I’m close to write during this lesson is actually valid and factual? How are you able to really be sure? the reality is unless you've got followed me and my posts on this blog for an extended time and know me and know my work, then you can’t really make certain , and that i don’t expect you to easily believe it at face value. If you would like to return back and re-read this lesson during a few weeks, or a couple of months, or a couple of years, after you work out that i'm somebody worth taking note of about trading OR that i'm somebody not worth taking note of about trading, then so be it.
So with a degree of healthy skepticism, I ask you to think about the below list of eye-opening secrets that professional traders and therefore the trading industry, don’t want you to understand about or understand. I hope it helps…
Visit : توصيات الذهب اليوم
FOREX isn’t the sole market the Professionals trade
The FX market is large , with billions of dollars per day changing hands. It can cause you to great money if you recognize what you’re doing OR it can send you broke if you don’t. It’s a really popular market to trade globally, BUT it’s not the sole market the professional’s trade and it’s not always the simplest market to trade either.
A note on leverage:
The brokers and platform providers want you to trade FX on high leverage because the profit margins are very high for them. However, if you trade FX on lower leverage, the profit margins shrink dramatically for them. once you trade FX, start brooding about what can fail rather than just brooding about what can go right. I suggest avoiding stupidly high leverage like 400 to 1, as this will be very dangerous for you if the market moves quickly or experiences a price gap and your stop-loss orders aren’t executed at the worth you set. A more sensible leverage level would be 100 to 1 or 200 to 1, but any higher seems crazy. (Using an excessive amount of leverage is what wiped tons of traders out during Swiss Bank Crisis in 2015, The Brexit choose 2016 and therefore the Currency flash crash in early 2019).
Broaden your view:
Going forward, it'll serve you well in your trading career to start out watching a spread of worldwide markets including FX, Stock Indicies and Commodities. additionally to FX, I personally trade GOLD (XAUUSD), S&P500 Index USA, the SPI200 Index Australia, and therefore the Hang Seng Index Hong Kong , and sometimes individual stocks on various global exchanges. In short, there's more to the trading world than simply FX. I discuss the foremost popular markets I trade this lesson here.
Day trading isn’t what Pro trading really is
The internet is crammed with marketing trying to convince folks that the definition of a trader may be a one that spends all day actively trading in and out of the market on a brief term basis, all whilst living the life-style of a Wall St millionaire. there's a significant agenda within the industry to push this story to the masses, it's been relentless for many years .
I am yet to satisfy one successful day trader who is consistent over the future and that i have almost 25,000 students and 250,000 readers on this blog. i'm not saying there isn’t a couple of out there, but 99.9% of the people that do this sort of trading or attempt to live up to the standard day trader stereotype are getting to fail and perhaps even harm themselves financially or mentally. Watching a screen all day and searching for trades constantly is that the like a compulsive gambler playing roulette during a casino.
The successful traders i do know of (myself included) are watching higher time frames and longer time horizons (minimum 4-hour chart timeframes and predominantly daily chart time frames). they need no restriction on how long they're looking to carry a trade for and that they tend to let the trades find them. The professionals i do know , don't day trade, they are doing not watch screens all day, they are doing not search for trades constantly. they're going to typically fall under the category of a swing trader, trend trader or position trader.
The obvious paradox and conflicting reality within the ‘day trader story’ is blatantly obvious. How does a trader who is consistently watching a screen and constantly trading have time to enjoy his life and live the lifestyle? They chose to trade as a profession to possess a life, they didn’t choose it to observe a screen 24/5.
Here are some points to think about that employment against the so-called ‘ day trader’:
The shorter the time-frame the more noise and random price movement there's , thus increasing your chance of simply being stopped out of the trade.
Your ‘trading edge’ features a higher chance of yielding a result for you if you’re not trading within the intraday noise.
The same trading edge doesn't work or produce an equivalent results on a 5 min chart compared to a Daily chart.
Commissions and spreads churn your account, therefore the more you trade the more you lose in broker platform costs. (I will mention this below)
Risk-Reward ratios aren't relative on shorter and longer time frames. Statistical average volatility across different time periods also as natural market dynamics play an enormous role during this . there's much more weight behind higher time frames than lower timeframes.
Great trades take time because the market moves slower than most of the people ever anticipate. Trading from the upper timeframes and holding trades for extended time periods will provide you with greater opportunities to ascertain trades mature into big winners. However, shorter timeframes don’t provide you with this same opportunity fairly often .
submitted by LondonForex to u/LondonForex [link] [comments]

Everything You Always Wanted To Know About Swaps* (*But Were Afraid To Ask)

Hello, dummies
It's your old pal, Fuzzy.
As I'm sure you've all noticed, a lot of the stuff that gets posted here is - to put it delicately - fucking ridiculous. More backwards-ass shit gets posted to wallstreetbets than you'd see on a Westboro Baptist community message board. I mean, I had a look at the daily thread yesterday and..... yeesh. I know, I know. We all make like the divine Laura Dern circa 1992 on the daily and stick our hands deep into this steaming heap of shit to find the nuggets of valuable and/or hilarious information within (thanks for reading, BTW). I agree. I love it just the way it is too. That's what makes WSB great.
What I'm getting at is that a lot of the stuff that gets posted here - notwithstanding it being funny or interesting - is just... wrong. Like, fucking your cousin wrong. And to be clear, I mean the fucking your *first* cousin kinda wrong, before my Southerners in the back get all het up (simmer down, Billy Ray - I know Mabel's twice removed on your grand-sister's side). Truly, I try to let it slide. I do my bit to try and put you on the right path. Most of the time, I sleep easy no matter how badly I've seen someone explain what a bank liquidity crisis is. But out of all of those tens of thousands of misguided, autistic attempts at understanding the world of high finance, one thing gets so consistently - so *emphatically* - fucked up and misunderstood by you retards that last night I felt obligated at the end of a long work day to pull together this edition of Finance with Fuzzy just for you. It's so serious I'm not even going to make a u/pokimane gag. Have you guessed what it is yet? Here's a clue. It's in the title of the post.
That's right, friends. Today in the neighborhood we're going to talk all about hedging in financial markets - spots, swaps, collars, forwards, CDS, synthetic CDOs, all that fun shit. Don't worry; I'm going to explain what all the scary words mean and how they impact your OTM RH positions along the way.
We're going to break it down like this. (1) "What's a hedge, Fuzzy?" (2) Common Hedging Strategies and (3) All About ISDAs and Credit Default Swaps.
Before we begin. For the nerds and JV traders in the back (and anyone else who needs to hear this up front) - I am simplifying these descriptions for the purposes of this post. I am also obviously not going to try and cover every exotic form of hedge under the sun or give a detailed summation of what caused the financial crisis. If you are interested in something specific ask a question, but don't try and impress me with your Investopedia skills or technical points I didn't cover; I will just be forced to flex my years of IRL experience on you in the comments and you'll look like a big dummy.
TL;DR? Fuck you. There is no TL;DR. You've come this far already. What's a few more paragraphs? Put down the Cheetos and try to concentrate for the next 5-7 minutes. You'll learn something, and I promise I'll be gentle.
Ready? Let's get started.
1. The Tao of Risk: Hedging as a Way of Life
The simplest way to characterize what a hedge 'is' is to imagine every action having a binary outcome. One is bad, one is good. Red lines, green lines; uppie, downie. With me so far? Good. A 'hedge' is simply the employment of a strategy to mitigate the effect of your action having the wrong binary outcome. You wanted X, but you got Z! Frowny face. A hedge strategy introduces a third outcome. If you hedged against the possibility of Z happening, then you can wind up with Y instead. Not as good as X, but not as bad as Z. The technical definition I like to give my idiot juniors is as follows:
Utilization of a defensive strategy to mitigate risk, at a fraction of the cost to capital of the risk itself.
Congratulations. You just finished Hedging 101. "But Fuzzy, that's easy! I just sold a naked call against my 95% OTM put! I'm adequately hedged!". Spoiler alert: you're not (although good work on executing a collar, which I describe below). What I'm talking about here is what would be referred to as a 'perfect hedge'; a binary outcome where downside is totally mitigated by a risk management strategy. That's not how it works IRL. Pay attention; this is the tricky part.
You can't take a single position and conclude that you're adequately hedged because risks are fluid, not static. So you need to constantly adjust your position in order to maximize the value of the hedge and insure your position. You also need to consider exposure to more than one category of risk. There are micro (specific exposure) risks, and macro (trend exposure) risks, and both need to factor into the hedge calculus.
That's why, in the real world, the value of hedging depends entirely on the design of the hedging strategy itself. Here, when we say "value" of the hedge, we're not talking about cash money - we're talking about the intrinsic value of the hedge relative to the the risk profile of your underlying exposure. To achieve this, people hedge dynamically. In wallstreetbets terms, this means that as the value of your position changes, you need to change your hedges too. The idea is to efficiently and continuously distribute and rebalance risk across different states and periods, taking value from states in which the marginal cost of the hedge is low and putting it back into states where marginal cost of the hedge is high, until the shadow value of your underlying exposure is equalized across your positions. The punchline, I guess, is that one static position is a hedge in the same way that the finger paintings you make for your wife's boyfriend are art - it's technically correct, but you're only playing yourself by believing it.
Anyway. Obviously doing this as a small potatoes trader is hard but it's worth taking into account. Enough basic shit. So how does this work in markets?
2. A Hedging Taxonomy
The best place to start here is a practical question. What does a business need to hedge against? Think about the specific risk that an individual business faces. These are legion, so I'm just going to list a few of the key ones that apply to most corporates. (1) You have commodity risk for the shit you buy or the shit you use. (2) You have currency risk for the money you borrow. (3) You have rate risk on the debt you carry. (4) You have offtake risk for the shit you sell. Complicated, right? To help address the many and varied ways that shit can go wrong in a sophisticated market, smart operators like yours truly have devised a whole bundle of different instruments which can help you manage the risk. I might write about some of the more complicated ones in a later post if people are interested (CDO/CLOs, strip/stack hedges and bond swaps with option toggles come to mind) but let's stick to the basics for now.
(i) Swaps
A swap is one of the most common forms of hedge instrument, and they're used by pretty much everyone that can afford them. The language is complicated but the concept isn't, so pay attention and you'll be fine. This is the most important part of this section so it'll be the longest one.
Swaps are derivative contracts with two counterparties (before you ask, you can't trade 'em on an exchange - they're OTC instruments only). They're used to exchange one cash flow for another cash flow of equal expected value; doing this allows you to take speculative positions on certain financial prices or to alter the cash flows of existing assets or liabilities within a business. "Wait, Fuzz; slow down! What do you mean sets of cash flows?". Fear not, little autist. Ol' Fuzz has you covered.
The cash flows I'm talking about are referred to in swap-land as 'legs'. One leg is fixed - a set payment that's the same every time it gets paid - and the other is variable - it fluctuates (typically indexed off the price of the underlying risk that you are speculating on / protecting against). You set it up at the start so that they're notionally equal and the two legs net off; so at open, the swap is a zero NPV instrument. Here's where the fun starts. If the price that you based the variable leg of the swap on changes, the value of the swap will shift; the party on the wrong side of the move ponies up via the variable payment. It's a zero sum game.
I'll give you an example using the most vanilla swap around; an interest rate trade. Here's how it works. You borrow money from a bank, and they charge you a rate of interest. You lock the rate up front, because you're smart like that. But then - quelle surprise! - the rate gets better after you borrow. Now you're bagholding to the tune of, I don't know, 5 bps. Doesn't sound like much but on a billion dollar loan that's a lot of money (a classic example of the kind of 'small, deep hole' that's terrible for profits). Now, if you had a swap contract on the rate before you entered the trade, you're set; if the rate goes down, you get a payment under the swap. If it goes up, whatever payment you're making to the bank is netted off by the fact that you're borrowing at a sub-market rate. Win-win! Or, at least, Lose Less / Lose Less. That's the name of the game in hedging.
There are many different kinds of swaps, some of which are pretty exotic; but they're all different variations on the same theme. If your business has exposure to something which fluctuates in price, you trade swaps to hedge against the fluctuation. The valuation of swaps is also super interesting but I guarantee you that 99% of you won't understand it so I'm not going to try and explain it here although I encourage you to google it if you're interested.
Because they're OTC, none of them are filed publicly. Someeeeeetimes you see an ISDA (dsicussed below) but the confirms themselves (the individual swaps) are not filed. You can usually read about the hedging strategy in a 10-K, though. For what it's worth, most modern credit agreements ban speculative hedging. Top tip: This is occasionally something worth checking in credit agreements when you invest in businesses that are debt issuers - being able to do this increases the risk profile significantly and is particularly important in times of economic volatility (ctrl+f "non-speculative" in the credit agreement to be sure).
(ii) Forwards
A forward is a contract made today for the future delivery of an asset at a pre-agreed price. That's it. "But Fuzzy! That sounds just like a futures contract!". I know. Confusing, right? Just like a futures trade, forwards are generally used in commodity or forex land to protect against price fluctuations. The differences between forwards and futures are small but significant. I'm not going to go into super boring detail because I don't think many of you are commodities traders but it is still an important thing to understand even if you're just an RH jockey, so stick with me.
Just like swaps, forwards are OTC contracts - they're not publicly traded. This is distinct from futures, which are traded on exchanges (see The Ballad Of Big Dick Vick for some more color on this). In a forward, no money changes hands until the maturity date of the contract when delivery and receipt are carried out; price and quantity are locked in from day 1. As you now know having read about BDV, futures are marked to market daily, and normally people close them out with synthetic settlement using an inverse position. They're also liquid, and that makes them easier to unwind or close out in case shit goes sideways.
People use forwards when they absolutely have to get rid of the thing they made (or take delivery of the thing they need). If you're a miner, or a farmer, you use this shit to make sure that at the end of the production cycle, you can get rid of the shit you made (and you won't get fucked by someone taking cash settlement over delivery). If you're a buyer, you use them to guarantee that you'll get whatever the shit is that you'll need at a price agreed in advance. Because they're OTC, you can also exactly tailor them to the requirements of your particular circumstances.
These contracts are incredibly byzantine (and there are even crazier synthetic forwards you can see in money markets for the true degenerate fund managers). In my experience, only Texan oilfield magnates, commodities traders, and the weirdo forex crowd fuck with them. I (i) do not own a 10 gallon hat or a novelty size belt buckle (ii) do not wake up in the middle of the night freaking out about the price of pork fat and (iii) love greenbacks too much to care about other countries' monopoly money, so I don't fuck with them.
(iii) Collars
No, not the kind your wife is encouraging you to wear try out to 'spice things up' in the bedroom during quarantine. Collars are actually the hedging strategy most applicable to WSB. Collars deal with options! Hooray!
To execute a basic collar (also called a wrapper by tea-drinking Brits and people from the Antipodes), you buy an out of the money put while simultaneously writing a covered call on the same equity. The put protects your position against price drops and writing the call produces income that offsets the put premium. Doing this limits your tendies (you can only profit up to the strike price of the call) but also writes down your risk. If you screen large volume trades with a VOL/OI of more than 3 or 4x (and they're not bullshit biotech stocks), you can sometimes see these being constructed in real time as hedge funds protect themselves on their shorts.
(3) All About ISDAs, CDS and Synthetic CDOs
You may have heard about the mythical ISDA. Much like an indenture (discussed in my post on $F), it's a magic legal machine that lets you build swaps via trade confirms with a willing counterparty. They are very complicated legal documents and you need to be a true expert to fuck with them. Fortunately, I am, so I do. They're made of two parts; a Master (which is a form agreement that's always the same) and a Schedule (which amends the Master to include your specific terms). They are also the engine behind just about every major credit crunch of the last 10+ years.
First - a brief explainer. An ISDA is a not in and of itself a hedge - it's an umbrella contract that governs the terms of your swaps, which you use to construct your hedge position. You can trade commodities, forex, rates, whatever, all under the same ISDA.
Let me explain. Remember when we talked about swaps? Right. So. You can trade swaps on just about anything. In the late 90s and early 2000s, people had the smart idea of using other people's debt and or credit ratings as the variable leg of swap documentation. These are called credit default swaps. I was actually starting out at a bank during this time and, I gotta tell you, the only thing I can compare people's enthusiasm for this shit to was that moment in your early teens when you discover jerking off. Except, unlike your bathroom bound shame sessions to Mom's Sears catalogue, every single person you know felt that way too; and they're all doing it at once. It was a fiscal circlejerk of epic proportions, and the financial crisis was the inevitable bukkake finish. WSB autism is absolutely no comparison for the enthusiasm people had during this time for lighting each other's money on fire.
Here's how it works. You pick a company. Any company. Maybe even your own! And then you write a swap. In the swap, you define "Credit Event" with respect to that company's debt as the variable leg . And you write in... whatever you want. A ratings downgrade, default under the docs, failure to meet a leverage ratio or FCCR for a certain testing period... whatever. Now, this started out as a hedge position, just like we discussed above. The purest of intentions, of course. But then people realized - if bad shit happens, you make money. And banks... don't like calling in loans or forcing bankruptcies. Can you smell what the moral hazard is cooking?
Enter synthetic CDOs. CDOs are basically pools of asset backed securities that invest in debt (loans or bonds). They've been around for a minute but they got famous in the 2000s because a shitload of them containing subprime mortgage debt went belly up in 2008. This got a lot of publicity because a lot of sad looking rednecks got foreclosed on and were interviewed on CNBC. "OH!", the people cried. "Look at those big bad bankers buying up subprime loans! They caused this!". Wrong answer, America. The debt wasn't the problem. What a lot of people don't realize is that the real meat of the problem was not in regular way CDOs investing in bundles of shit mortgage debts in synthetic CDOs investing in CDS predicated on that debt. They're synthetic because they don't have a stake in the actual underlying debt; just the instruments riding on the coattails. The reason these are so popular (and remain so) is that smart structured attorneys and bankers like your faithful correspondent realized that an even more profitable and efficient way of building high yield products with limited downside was investing in instruments that profit from failure of debt and in instruments that rely on that debt and then hedging that exposure with other CDS instruments in paired trades, and on and on up the chain. The problem with doing this was that everyone wound up exposed to everybody else's books as a result, and when one went tits up, everybody did. Hence, recession, Basel III, etc. Thanks, Obama.
Heavy investment in CDS can also have a warping effect on the price of debt (something else that happened during the pre-financial crisis years and is starting to happen again now). This happens in three different ways. (1) Investors who previously were long on the debt hedge their position by selling CDS protection on the underlying, putting downward pressure on the debt price. (2) Investors who previously shorted the debt switch to buying CDS protection because the relatively illiquid debt (partic. when its a bond) trades at a discount below par compared to the CDS. The resulting reduction in short selling puts upward pressure on the bond price. (3) The delta in price and actual value of the debt tempts some investors to become NBTs (neg basis traders) who long the debt and purchase CDS protection. If traders can't take leverage, nothing happens to the price of the debt. If basis traders can take leverage (which is nearly always the case because they're holding a hedged position), they can push up or depress the debt price, goosing swap premiums etc. Anyway. Enough technical details.
I could keep going. This is a fascinating topic that is very poorly understood and explained, mainly because the people that caused it all still work on the street and use the same tactics today (it's also terribly taught at business schools because none of the teachers were actually around to see how this played out live). But it relates to the topic of today's lesson, so I thought I'd include it here.
Work depending, I'll be back next week with a covenant breakdown. Most upvoted ticker gets the post.
*EDIT 1\* In a total blowout, $PLAY won. So it's D&B time next week. Post will drop Monday at market open.
submitted by fuzzyblankeet to wallstreetbets [link] [comments]

H1 Backtest of ParallaxFX's BBStoch system

Disclaimer: None of this is financial advice. I have no idea what I'm doing. Please do your own research or you will certainly lose money. I'm not a statistician, data scientist, well-seasoned trader, or anything else that would qualify me to make statements such as the below with any weight behind them. Take them for the incoherent ramblings that they are.
TL;DR at the bottom for those not interested in the details.
This is a bit of a novel, sorry about that. It was mostly for getting my own thoughts organized, but if even one person reads the whole thing I will feel incredibly accomplished.

Background

For those of you not familiar, please see the various threads on this trading system here. I can't take credit for this system, all glory goes to ParallaxFX!
I wanted to see how effective this system was at H1 for a couple of reasons: 1) My current broker is TD Ameritrade - their Forex minimum is a mini lot, and I don't feel comfortable enough yet with the risk to trade mini lots on the higher timeframes(i.e. wider pip swings) that ParallaxFX's system uses, so I wanted to see if I could scale it down. 2) I'm fairly impatient, so I don't like to wait days and days with my capital tied up just to see if a trade is going to win or lose.
This does mean it requires more active attention since you are checking for setups once an hour instead of once a day or every 4-6 hours, but the upside is that you trade more often this way so you end up winning or losing faster and moving onto the next trade. Spread does eat more of the trade this way, but I'll cover this in my data below - it ends up not being a problem.
I looked at data from 6/11 to 7/3 on all pairs with a reasonable spread(pairs listed at bottom above the TL;DR). So this represents about 3-4 weeks' worth of trading. I used mark(mid) price charts. Spreadsheet link is below for anyone that's interested.

System Details

I'm pretty much using ParallaxFX's system textbook, but since there are a few options in his writeups, I'll include all the discretionary points here:

And now for the fun. Results!

As you can see, a higher target ended up with higher profit despite a much lower winrate. This is partially just how things work out with profit targets in general, but there's an additional point to consider in our case: the spread. Since we are trading on a lower timeframe, there is less overall price movement and thus the spread takes up a much larger percentage of the trade than it would if you were trading H4, Daily or Weekly charts. You can see exactly how much it accounts for each trade in my spreadsheet if you're interested. TDA does not have the best spreads, so you could probably improve these results with another broker.
EDIT: I grabbed typical spreads from other brokers, and turns out while TDA is pretty competitive on majors, their minors/crosses are awful! IG beats them by 20-40% and Oanda beats them 30-60%! Using IG spreads for calculations increased profits considerably (another 5% on top) and Oanda spreads increased profits massively (another 15%!). Definitely going to be considering another broker than TDA for this strategy. Plus that'll allow me to trade micro-lots, so I can be more granular(and thus accurate) with my position sizing and compounding.

A Note on Spread

As you can see in the data, there were scenarios where the spread was 80% of the overall size of the trade(the size of the confirmation candle that you draw your fibonacci retracements over), which would obviously cut heavily into your profits.
Removing any trades where the spread is more than 50% of the trade width improved profits slightly without removing many trades, but this is almost certainly just coincidence on a small sample size. Going below 40% and even down to 30% starts to cut out a lot of trades for the less-common pairs, but doesn't actually change overall profits at all(~1% either way).
However, digging all the way down to 25% starts to really make some movement. Profit at the -161.8% TP level jumps up to 37.94% if you filter out anything with a spread that is more than 25% of the trade width! And this even keeps the sample size fairly large at 187 total trades.
You can get your profits all the way up to 48.43% at the -161.8% TP level if you filter all the way down to only trades where spread is less than 15% of the trade width, however your sample size gets much smaller at that point(108 trades) so I'm not sure I would trust that as being accurate in the long term.
Overall based on this data, I'm going to only take trades where the spread is less than 25% of the trade width. This may bias my trades more towards the majors, which would mean a lot more correlated trades as well(more on correlation below), but I think it is a reasonable precaution regardless.

Time of Day

Time of day had an interesting effect on trades. In a totally predictable fashion, a vast majority of setups occurred during the London and New York sessions: 5am-12pm Eastern. However, there was one outlier where there were many setups on the 11PM bar - and the winrate was about the same as the big hours in the London session. No idea why this hour in particular - anyone have any insight? That's smack in the middle of the Tokyo/Sydney overlap, not at the open or close of either.
On many of the hour slices I have a feeling I'm just dealing with small number statistics here since I didn't have a lot of data when breaking it down by individual hours. But here it is anyway - for all TP levels, these three things showed up(all in Eastern time):
I don't have any reason to think these timeframes would maintain this behavior over the long term. They're almost certainly meaningless. EDIT: When you de-dup highly correlated trades, the number of trades in these timeframes really drops, so from this data there is no reason to think these timeframes would be any different than any others in terms of winrate.
That being said, these time frames work out for me pretty well because I typically sleep 12am-7am Eastern time. So I automatically avoid the 5am-6am timeframe, and I'm awake for the majority of this system's setups.

Moving stops up to breakeven

This section goes against everything I know and have ever heard about trade management. Please someone find something wrong with my data. I'd love for someone to check my formulas, but I realize that's a pretty insane time commitment to ask of a bunch of strangers.
Anyways. What I found was that for these trades moving stops up...basically at all...actually reduced the overall profitability.
One of the data points I collected while charting was where the price retraced back to after hitting a certain milestone. i.e. once the price hit the -61.8% profit level, how far back did it retrace before hitting the -100% profit level(if at all)? And same goes for the -100% profit level - how far back did it retrace before hitting the -161.8% profit level(if at all)?
Well, some complex excel formulas later and here's what the results appear to be. Emphasis on appears because I honestly don't believe it. I must have done something wrong here, but I've gone over it a hundred times and I can't find anything out of place.
Now, you might think exactly what I did when looking at these numbers: oof, the spread killed us there right? Because even when you move your SL to 0%, you still end up paying the spread, so it's not truly "breakeven". And because we are trading on a lower timeframe, the spread can be pretty hefty right?
Well even when I manually modified the data so that the spread wasn't subtracted(i.e. "Breakeven" was truly +/- 0), things don't look a whole lot better, and still way worse than the passive trade management method of leaving your stops in place and letting it run. And that isn't even a realistic scenario because to adjust out the spread you'd have to move your stoploss inside the candle edge by at least the spread amount, meaning it would almost certainly be triggered more often than in the data I collected(which was purely based on the fib levels and mark price). Regardless, here are the numbers for that scenario:
From a literal standpoint, what I see behind this behavior is that 44 of the 69 breakeven trades(65%!) ended up being profitable to -100% after retracing deeply(but not to the original SL level), which greatly helped offset the purely losing trades better than the partial profit taken at -61.8%. And 36 went all the way back to -161.8% after a deep retracement without hitting the original SL. Anyone have any insight into this? Is this a problem with just not enough data? It seems like enough trades that a pattern should emerge, but again I'm no expert.
I also briefly looked at moving stops to other lower levels (78.6%, 61.8%, 50%, 38.2%, 23.6%), but that didn't improve things any. No hard data to share as I only took a quick look - and I still might have done something wrong overall.
The data is there to infer other strategies if anyone would like to dig in deep(more explanation on the spreadsheet below). I didn't do other combinations because the formulas got pretty complicated and I had already answered all the questions I was looking to answer.

2-Candle vs Confirmation Candle Stops

Another interesting point is that the original system has the SL level(for stop entries) just at the outer edge of the 2-candle pattern that makes up the system. Out of pure laziness, I set up my stops just based on the confirmation candle. And as it turns out, that is much a much better way to go about it.
Of the 60 purely losing trades, only 9 of them(15%) would go on to be winners with stops on the 2-candle formation. Certainly not enough to justify the extra loss and/or reduced profits you are exposing yourself to in every single other trade by setting a wider SL.
Oddly, in every single scenario where the wider stop did save the trade, it ended up going all the way to the -161.8% profit level. Still, not nearly worth it.

Correlated Trades

As I've said many times now, I'm really not qualified to be doing an analysis like this. This section in particular.
Looking at shared currency among the pairs traded, 74 of the trades are correlated. Quite a large group, but it makes sense considering the sort of moves we're looking for with this system.
This means you are opening yourself up to more risk if you were to trade on every signal since you are technically trading with the same underlying sentiment on each different pair. For example, GBP/USD and AUD/USD moving together almost certainly means it's due to USD moving both pairs, rather than GBP and AUD both moving the same size and direction coincidentally at the same time. So if you were to trade both signals, you would very likely win or lose both trades - meaning you are actually risking double what you'd normally risk(unless you halve both positions which can be a good option, and is discussed in ParallaxFX's posts and in various other places that go over pair correlation. I won't go into detail about those strategies here).
Interestingly though, 17 of those apparently correlated trades ended up with different wins/losses.
Also, looking only at trades that were correlated, winrate is 83%/70%/55% (for the three TP levels).
Does this give some indication that the same signal on multiple pairs means the signal is stronger? That there's some strong underlying sentiment driving it? Or is it just a matter of too small a sample size? The winrate isn't really much higher than the overall winrates, so that makes me doubt it is statistically significant.
One more funny tidbit: EUCAD netted the lowest overall winrate: 30% to even the -61.8% TP level on 10 trades. Seems like that is just a coincidence and not enough data, but dang that's a sucky losing streak.
EDIT: WOW I spent some time removing correlated trades manually and it changed the results quite a bit. Some thoughts on this below the results. These numbers also include the other "What I will trade" filters. I added a new worksheet to my data to show what I ended up picking.
To do this, I removed correlated trades - typically by choosing those whose spread had a lower % of the trade width since that's objective and something I can see ahead of time. Obviously I'd like to only keep the winning trades, but I won't know that during the trade. This did reduce the overall sample size down to a level that I wouldn't otherwise consider to be big enough, but since the results are generally consistent with the overall dataset, I'm not going to worry about it too much.
I may also use more discretionary methods(support/resistance, quality of indecision/confirmation candles, news/sentiment for the pairs involved, etc) to filter out correlated trades in the future. But as I've said before I'm going for a pretty mechanical system.
This brought the 3 TP levels and even the breakeven strategies much closer together in overall profit. It muted the profit from the high R:R strategies and boosted the profit from the low R:R strategies. This tells me pair correlation was skewing my data quite a bit, so I'm glad I dug in a little deeper. Fortunately my original conclusion to use the -161.8 TP level with static stops is still the winner by a good bit, so it doesn't end up changing my actions.
There were a few times where MANY (6-8) correlated pairs all came up at the same time, so it'd be a crapshoot to an extent. And the data showed this - often then won/lost together, but sometimes they did not. As an arbitrary rule, the more correlations, the more trades I did end up taking(and thus risking). For example if there were 3-5 correlations, I might take the 2 "best" trades given my criteria above. 5+ setups and I might take the best 3 trades, even if the pairs are somewhat correlated.
I have no true data to back this up, but to illustrate using one example: if AUD/JPY, AUD/USD, CAD/JPY, USD/CAD all set up at the same time (as they did, along with a few other pairs on 6/19/20 9:00 AM), can you really say that those are all the same underlying movement? There are correlations between the different correlations, and trying to filter for that seems rough. Although maybe this is a known thing, I'm still pretty green to Forex - someone please enlighten me if so! I might have to look into this more statistically, but it would be pretty complex to analyze quantitatively, so for now I'm going with my gut and just taking a few of the "best" trades out of the handful.
Overall, I'm really glad I went further on this. The boosting of the B/E strategies makes me trust my calculations on those more since they aren't so far from the passive management like they were with the raw data, and that really had me wondering what I did wrong.

What I will trade

Putting all this together, I am going to attempt to trade the following(demo for a bit to make sure I have the hang of it, then for keeps):
Looking at the data for these rules, test results are:
I'll be sure to let everyone know how it goes!

Other Technical Details

Raw Data

Here's the spreadsheet for anyone that'd like it. (EDIT: Updated some of the setups from the last few days that have fully played out now. I also noticed a few typos, but nothing major that would change the overall outcomes. Regardless, I am currently reviewing every trade to ensure they are accurate.UPDATE: Finally all done. Very few corrections, no change to results.)
I have some explanatory notes below to help everyone else understand the spiraled labyrinth of a mind that put the spreadsheet together.

Insanely detailed spreadsheet notes

For you real nerds out there. Here's an explanation of what each column means:

Pairs

  1. AUD/CAD
  2. AUD/CHF
  3. AUD/JPY
  4. AUD/NZD
  5. AUD/USD
  6. CAD/CHF
  7. CAD/JPY
  8. CHF/JPY
  9. EUAUD
  10. EUCAD
  11. EUCHF
  12. EUGBP
  13. EUJPY
  14. EUNZD
  15. EUUSD
  16. GBP/AUD
  17. GBP/CAD
  18. GBP/CHF
  19. GBP/JPY
  20. GBP/NZD
  21. GBP/USD
  22. NZD/CAD
  23. NZD/CHF
  24. NZD/JPY
  25. NZD/USD
  26. USD/CAD
  27. USD/CHF
  28. USD/JPY

TL;DR

Based on the reasonable rules I discovered in this backtest:

Demo Trading Results

Since this post, I started demo trading this system assuming a 5k capital base and risking ~1% per trade. I've added the details to my spreadsheet for anyone interested. The results are pretty similar to the backtest when you consider real-life conditions/timing are a bit different. I missed some trades due to life(work, out of the house, etc), so that brought my total # of trades and thus overall profit down, but the winrate is nearly identical. I also closed a few trades early due to various reasons(not liking the price action, seeing support/resistance emerge, etc).
A quick note is that TD's paper trade system fills at the mid price for both stop and limit orders, so I had to subtract the spread from the raw trade values to get the true profit/loss amount for each trade.
I'm heading out of town next week, then after that it'll be time to take this sucker live!

Live Trading Results

I started live-trading this system on 8/10, and almost immediately had a string of losses much longer than either my backtest or demo period. Murphy's law huh? Anyways, that has me spooked so I'm doing a longer backtest before I start risking more real money. It's going to take me a little while due to the volume of trades, but I'll likely make a new post once I feel comfortable with that and start live trading again.
submitted by ForexBorex to Forex [link] [comments]

Former investment bank FX trader: Risk management part 3/3

Former investment bank FX trader: Risk management part 3/3
Welcome to the third and final part of this chapter.
Thank you all for the 100s of comments and upvotes - maybe this post will take us above 1,000 for this topic!
Keep any feedback or questions coming in the replies below.
Before you read this note, please start with Part I and then Part II so it hangs together and makes sense.
Part III
  • Squeezes and other risks
  • Market positioning
  • Bet correlation
  • Crap trades, timeouts and monthly limits

Squeezes and other risks

We are going to cover three common risks that traders face: events; squeezes, asymmetric bets.

Events

Economic releases can cause large short-term volatility. The most famous is Non Farm Payrolls, which is the most widely watched measure of US employment levels and affects the price of many instruments.On an NFP announcement currencies like EURUSD might jump (or drop) 100 pips no problem.
This is fine and there are trading strategies that one may employ around this but the key thing is to be aware of these releases.You can find economic calendars all over the internet - including on this site - and you need only check if there are any major releases each day or week.
For example, if you are trading off some intraday chart and scalping a few pips here and there it would be highly sensible to go into a known data release flat as it is pure coin-toss and not the reason for your trading. It only takes five minutes each day to plan for the day ahead so do not get caught out by this. Many retail traders get stopped out on such events when price volatility is at its peak.

Squeezes

Short squeezes bring a lot of danger and perhaps some opportunity.
The story of VW and Porsche is the best short squeeze ever. Throughout these articles we've used FX examples wherever possible but in this one instance the concept (which is also highly relevant in FX) is best illustrated with an historical lesson from a different asset class.
A short squeeze is when a participant ends up in a short position they are forced to cover. Especially when the rest of the market knows that this participant can be bullied into stopping out at terrible levels, provided the market can briefly drive the price into their pain zone.

There's a reason for the car, don't worry
Hedge funds had been shorting VW stock. However the amount of VW stock available to buy in the open market was actually quite limited. The local government owned a chunk and Porsche itself had bought and locked away around 30%. Neither of these would sell to the hedge-funds so a good amount of the stock was un-buyable at any price.
If you sell or short a stock you must be prepared to buy it back to go flat at some point.
To cut a long story short, Porsche bought a lot of call options on VW stock. These options gave them the right to purchase VW stock from banks at slightly above market price.
Eventually the banks who had sold these options realised there was no VW stock to go out and buy since the German government wouldn’t sell its allocation and Porsche wouldn’t either. If Porsche called in the options the banks were in trouble.
Porsche called in the options which forced the shorts to buy stock - at whatever price they could get it.
The price squeezed higher as those that were short got massively squeezed and stopped out. For one brief moment in 2008, VW was the world’s most valuable company. Shorts were burned hard.

Incredible event
Porsche apparently made $11.5 billion on the trade. The BBC described Porsche as “a hedge fund with a carmaker attached.”
If this all seems exotic then know that the same thing happens in FX all the time. If everyone in the market is talking about a key level in EURUSD being 1.2050 then you can bet the market will try to push through 1.2050 just to take out any short stops at that level. Whether it then rallies higher or fails and trades back lower is a different matter entirely.
This brings us on to the matter of crowded trades. We will look at positioning in more detail in the next section. Crowded trades are dangerous for PNL. If everyone believes EURUSD is going down and has already sold EURUSD then you run the risk of a short squeeze.
For additional selling to take place you need a very good reason for people to add to their position whereas a move in the other direction could force mass buying to cover their shorts.
A trading mentor when I worked at the investment bank once advised me:
Always think about which move would cause the maximum people the maximum pain. That move is precisely what you should be watching out for at all times.

Asymmetric losses

Also known as picking up pennies in front of a steamroller. This risk has caught out many a retail trader. Sometimes it is referred to as a "negative skew" strategy.
Ideally what you are looking for is asymmetric risk trade set-ups: that is where the downside is clearly defined and smaller than the upside. What you want to avoid is the opposite.
A famous example of this going wrong was the Swiss National Bank de-peg in 2012.
The Swiss National Bank had said they would defend the price of EURCHF so that it did not go below 1.2. Many people believed it could never go below 1.2 due to this. Many retail traders therefore opted for a strategy that some describe as ‘picking up pennies in front of a steam-roller’.
They would would buy EURCHF above the peg level and hope for a tiny rally of several pips before selling them back and keep doing this repeatedly. Often they were highly leveraged at 100:1 so that they could amplify the profit of the tiny 5-10 pip rally.
Then this happened.

Something that changed FX markets forever
The SNB suddenly did the unthinkable. They stopped defending the price. CHF jumped and so EURCHF (the number of CHF per 1 EUR) dropped to new lows very fast. Clearly, this trade had horrific risk : reward asymmetry: you risked 30% to make 0.05%.
Other strategies like naively selling options have the same result. You win a small amount of money each day and then spectacularly blow up at some point down the line.

Market positioning

We have talked about short squeezes. But how do you know what the market position is? And should you care?
Let’s start with the first. You should definitely care.
Let’s imagine the entire market is exceptionally long EURUSD and positioning reaches extreme levels. This makes EURUSD very vulnerable.
To keep the price going higher EURUSD needs to attract fresh buy orders. If everyone is already long and has no room to add, what can incentivise people to keep buying? The news flow might be good. They may believe EURUSD goes higher. But they have already bought and have their maximum position on.
On the flip side, if there’s an unexpected event and EURUSD gaps lower you will have the entire market trying to exit the position at the same time. Like a herd of cows running through a single doorway. Messy.
We are going to look at this in more detail in a later chapter, where we discuss ‘carry’ trades. For now this TRYJPY chart might provide some idea of what a rush to the exits of a crowded position looks like.

A carry trade position clear-out in action
Knowing if the market is currently at extreme levels of long or short can therefore be helpful.
The CFTC makes available a weekly report, which details the overall positions of speculative traders “Non Commercial Traders” in some of the major futures products. This includes futures tied to deliverable FX pairs such as EURUSD as well as products such as gold. The report is called “CFTC Commitments of Traders” ("COT").
This is a great benchmark. It is far more representative of the overall market than the proprietary ones offered by retail brokers as it covers a far larger cross-section of the institutional market.
Generally market participants will not pay a lot of attention to commercial hedgers, which are also detailed in the report. This data is worth tracking but these folks are simply hedging real-world transactions rather than speculating so their activity is far less revealing and far more noisy.
You can find the data online for free and download it directly here.

Raw format is kinda hard to work with

However, many websites will chart this for you free of charge and you may find it more convenient to look at it that way. Just google “CFTC positioning charts”.

But you can easily get visualisations
You can visually spot extreme positioning. It is extremely powerful.
Bear in mind the reports come out Friday afternoon US time and the report is a snapshot up to the prior Tuesday. That means it is a lagged report - by the time it is released it is a few days out of date. For longer term trades where you hold positions for weeks this is of course still pretty helpful information.
As well as the absolute level (is the speculative market net long or short) you can also use this to pick up on changes in positioning.
For example if bad news comes out how much does the net short increase? If good news comes out, the market may remain net short but how much did they buy back?
A lot of traders ask themselves “Does the market have this trade on?” The positioning data is a good method for answering this. It provides a good finger on the pulse of the wider market sentiment and activity.
For example you might say: “There was lots of noise about the good employment numbers in the US. However, there wasn’t actually a lot of position change on the back of it. Maybe everyone who wants to buy already has. What would happen now if bad news came out?”
In general traders will be wary of entering a crowded position because it will be hard to attract additional buyers or sellers and there could be an aggressive exit.
If you want to enter a trade that is showing extreme levels of positioning you must think carefully about this dynamic.

Bet correlation

Retail traders often drastically underestimate how correlated their bets are.
Through bitter experience, I have learned that a mistake in position correlation is the root of some of the most serious problems in trading. If you have eight highly correlated positions, then you are really trading one position that is eight times as large.
Bruce Kovner of hedge fund, Caxton Associates
For example, if you are trading a bunch of pairs against the USD you will end up with a simply huge USD exposure. A single USD-trigger can ruin all your bets. Your ideal scenario — and it isn’t always possible — would be to have a highly diversified portfolio of bets that do not move in tandem.
Look at this chart. Inverted USD index (DXY) is green. AUDUSD is orange. EURUSD is blue.

Chart from TradingView
So the whole thing is just one big USD trade! If you are long AUDUSD, long EURUSD, and short DXY you have three anti USD bets that are all likely to work or fail together.
The more diversified your portfolio of bets are, the more risk you can take on each.
There’s a really good video, explaining the benefits of diversification from Ray Dalio.
A systematic fund with access to an investable universe of 10,000 instruments has more opportunity to make a better risk-adjusted return than a trader who only focuses on three symbols. Diversification really is the closest thing to a free lunch in finance.
But let’s be pragmatic and realistic. Human retail traders don’t have capacity to run even one hundred bets at a time. More realistic would be an average of 2-3 trades on simultaneously. So what can be done?
For example:
  • You might diversify across time horizons by having a mix of short-term and long-term trades.
  • You might diversify across asset classes - trading some FX but also crypto and equities.
  • You might diversify your trade generation approach so you are not relying on the same indicators or drivers on each trade.
  • You might diversify your exposure to the market regime by having some trades that assume a trend will continue (momentum) and some that assume we will be range-bound (carry).
And so on. Basically you want to scan your portfolio of trades and make sure you are not putting all your eggs in one basket. If some trades underperform others will perform - assuming the bets are not correlated - and that way you can ensure your overall portfolio takes less risk per unit of return.
The key thing is to start thinking about a portfolio of bets and what each new trade offers to your existing portfolio of risk. Will it diversify or amplify a current exposure?

Crap trades, timeouts and monthly limits

One common mistake is to get bored and restless and put on crap trades. This just means trades in which you have low conviction.
It is perfectly fine not to trade. If you feel like you do not understand the market at a particular point, simply choose not to trade.
Flat is a position.
Do not waste your bullets on rubbish trades. Only enter a trade when you have carefully considered it from all angles and feel good about the risk. This will make it far easier to hold onto the trade if it moves against you at any point. You actually believe in it.
Equally, you need to set monthly limits. A standard limit might be a 10% account balance stop per month. At that point you close all your positions immediately and stop trading till next month.

Be strict with yourself and walk away
Let’s assume you started the year with $100k and made 5% in January so enter Feb with $105k balance. Your stop is therefore 10% of $105k or $10.5k . If your account balance dips to $94.5k ($105k-$10.5k) then you stop yourself out and don’t resume trading till March the first.
Having monthly calendar breaks is nice for another reason. Say you made a load of money in January. You don’t want to start February feeling you are up 5% or it is too tempting to avoid trading all month and protect the existing win. Each month and each year should feel like a clean slate and an independent period.
Everyone has trading slumps. It is perfectly normal. It will definitely happen to you at some stage. The trick is to take a break and refocus. Conserve your capital by not trading a lot whilst you are on a losing streak. This period will be much harder for you emotionally and you’ll end up making suboptimal decisions. An enforced break will help you see the bigger picture.
Put in place a process before you start trading and then it’ll be easy to follow and will feel much less emotional. Remember: the market doesn’t care if you win or lose, it is nothing personal.
When your head has cooled and you feel calm you return the next month and begin the task of building back your account balance.

That's a wrap on risk management

Thanks for taking time to read this three-part chapter on risk management. I hope you enjoyed it. Do comment in the replies if you have any questions or feedback.
Remember: the most important part of trading is not making money. It is not losing money. Always start with that principle. I hope these three notes have provided some food for thought on how you might approach risk management and are of practical use to you when trading. Avoiding mistakes is not a sexy tagline but it is an effective and reliable way to improve results.
Next up I will be writing about an exciting topic I think many traders should look at rather differently: news trading. Please follow on here to receive notifications and the broad outline is below.
News Trading Part I
  • Introduction
  • Why use the economic calendar
  • Reading the economic calendar
  • Knowing what's priced in
  • Surveys
  • Interest rates
  • First order thinking vs second order thinking
News Trading Part II
  • Preparing for quantitative and qualitative releases
  • Data surprise index
  • Using recent events to predict future reactions
  • Buy the rumour, sell the fact
  • The mysterious 'position trim' effect
  • Reversals
  • Some key FX releases
***

Disclaimer:This content is not investment advice and you should not place any reliance on it. The views expressed are the author's own and should not be attributed to any other person, including their employer.
submitted by getmrmarket to Forex [link] [comments]

Former investment bank FX trader: News trading and second order thinking part 2/2

Former investment bank FX trader: News trading and second order thinking part 2/2
Thanks for all the upvotes and comments on the previous pieces:
From the first half of the news trading note we learned some ways to estimate what is priced in by the market. We learned that we are trading any gap in market expectations rather than the result itself. A good result when the market expected a fantastic result is disappointing! We also looked at second order thinking. After all that, I hope the reaction of prices to events is starting to make more sense to you.

Before you understand the core concepts of pricing in and second order thinking, price reactions to events can seem mystifying at times
We'll add one thought-provoking quote. Keynes (that rare economist who also managed institutional money) offered this analogy. He compared selecting investments to a beauty contest in which newspaper readers would write in with their votes and win a prize if their votes most closely matched the six most popularly selected women across all readers:
It is not a case of choosing those (faces) which, to the best of one’s judgment, are really the prettiest, nor even those which average opinions genuinely thinks the prettiest. We have reached the third degree where we devote our intelligences to anticipating what average opinion expects the average opinion to be.
Trading is no different. You are trying to anticipate how other traders will react to news and how that will move prices. Perhaps you disagree with their reaction. Still, if you can anticipate what it will be you would be sensible to act upon it. Don't forget: meanwhile they are also trying to anticipate what you and everyone else will do.

Part II
  • Preparing for quantitative and qualitative releases
  • Data surprise index
  • Using recent events to predict future reactions
  • Buy the rumour, sell the fact
  • The trimming position effect
  • Reversals
  • Some key FX releases

Preparing for quantitative and qualitative releases

The majority of releases are quantitative. All that means is there’s some number. Like unemployment figures or GDP.
Historic results provide interesting context. We are looking below the Australian unemployment rate which is released monthly. If you plot it out a few years back you can spot a clear trend, which got massively reversed. Knowing this trend gives you additional information when the figure is released. In the same way prices can trend so do economic data.

A great resource that's totally free to use
This makes sense: if for example things are getting steadily better in the economy you’d expect to see unemployment steadily going down.
Knowing the trend and how much noise there is in the data gives you an informational edge over lazy traders.
For example, when we see the spike above 6% on the above you’d instantly know it was crazy and a huge trading opportunity since a) the fluctuations month on month are normally tiny and b) it is a huge reversal of the long-term trend.
Would all the other AUDUSD traders know and react proportionately? If not and yet they still trade, their laziness may be an opportunity for more informed traders to make some money.
Tradingeconomics.com offers really high quality analysis. You can see all the major indicators for each country. Clicking them brings up their history as well as an explanation of what they show.
For example, here’s German Consumer Confidence.

Helpful context
There are also qualitative events. Normally these are speeches by Central Bankers.
There are whole blogs dedicated to closely reading such texts and looking for subtle changes in direction or opinion on the economy. Stuff like how often does the phrase "in a good place" come up when the Chair of the Fed speaks. It is pretty dry stuff. Yet these are leading indicators of how each member may vote to set interest rates. Ed Yardeni is the go-to guy on central banks.

Data surprise index

The other thing you might look at is something investment banks produce for their customers. A data surprise index. I am not sure if these are available in retail land - there's no reason they shouldn't be but the economic calendars online are very basic.
You’ll remember we talked about data not being good or bad of itself but good or bad relative to what was expected. These indices measure this difference.
If results are consistently better than analysts expect then you’ll see a positive number. If they are consistently worse than analysts expect a negative number. You can see they tend to swing from positive to negative.

Mean reversion at its best! Data surprise indices measure how much better or worse data came in vs forecast
There are many theories for this but in general people consider that analysts herd around the consensus. They are scared to be outliers and look ‘wrong’ or ‘stupid’ so they instead place estimates close to the pack of their peers.
When economic conditions change they may therefore be slow to update. When they are wrong consistently - say too bearish - they eventually flip the other way and become too bullish.
These charts can be interesting to give you an idea of how the recent data releases have been versus market expectations. You may try to spot the turning points in macroeconomic data that drive long term currency prices and trends.

Using recent events to predict future reactions

The market reaction function is the most important thing on an economic calendar in many ways. It means: what will happen to the price if the data is better or worse than the market expects?
That seems easy to answer but it is not.
Consider the example of consumer confidence we had earlier.
  • Many times the market will shrug and ignore it.
  • But when the economic recovery is predicated on a strong consumer it may move markets a lot.
Or consider the S&P index of US stocks (Wall Street).
  • If you get good economic data that beats analyst estimates surely it should go up? Well, sometimes that is certainly the case.
  • But good economic data might result in the US Central Bank raising interest rates. Raising interest rates will generally make the stock market go down!
So better than expected data could make the S&P go up (“the economy is great”) or down (“the Fed is more likely to raise rates”). It depends. The market can interpret the same data totally differently at different times.
One clue is to look at what happened to the price of risk assets at the last event.
For example, let’s say we looked at unemployment and it came in a lot worse than forecast last month. What happened to the S&P back then?

2% drop last time on a 'worse than expected' number ... so it it is 'better than expected' best guess is we rally 2% higher
So this tells us that - at least for our most recent event - the S&P moved 2% lower on a far worse than expected number. This gives us some guidance as to what it might do next time and the direction. Bad number = lower S&P. For a huge surprise 2% is the size of move we’d expect.
Again - this is a real limitation of online calendars. They should show next to the historic results (expected/actual) the reaction of various instruments.

Buy the rumour, sell the fact

A final example of an unpredictable reaction relates to the old rule of ‘Buy the rumour, sell the fact.’ This captures the tendency for markets to anticipate events and then reverse when they occur.

Buy the rumour, sell the fact
In short: people take profit and close their positions when what they expected to happen is confirmed.
So we have to decide which driver is most important to the market at any point in time. You obviously cannot ask every participant. The best way to do it is to look at what happened recently. Look at the price action during recent releases and you will get a feel for how much the market moves and in which direction.

Trimming or taking off positions

One thing to note is that events sometimes give smart participants information about positioning. This is because many traders take off or reduce positions ahead of big news events for risk management purposes.
Imagine we see GBPUSD rises in the hour before GDP release. That probably indicates the market is short and has taken off / flattened its positions.

The price action before an event can tell you about speculative positioning
If GDP is merely in line with expectations those same people are likely to add back their positions. They avoided a potential banana skin. This is why sometimes the market moves on an event that seemingly was bang on consensus.
But you have learned something. The speculative market is short and may prove vulnerable to a squeeze.

Two kinds of reversals

Fairly often you’ll see the market move in one direction on a release then turn around and go the other way.
These are known as reversals. Traders will often ‘fade’ a move, meaning bet against it and expect it to reverse.

Logical reversals

Sometimes this happens when the data looks good at first glance but the details don’t support it.
For example, say the headline is very bullish on German manufacturing numbers but then a minute later it becomes clear the company who releases the data has changed methodology or believes the number is driven by a one-off event. Or maybe the headline number is positive but buried in the detail there is a very negative revision to previous numbers.
Fading the initial spike is one way to trade news. Try looking at what the price action is one minute after the event and thirty minutes afterwards on historic releases.

Crazy reversals


Some reversals don't make sense
Sometimes a reversal happens for seemingly no fundamental reason. Say you get clearly positive news that is better than anyone expects. There are no caveats to the positive number. Yet the price briefly spikes up and then falls hard. What on earth?
This is a pure supply and demand thing. Even on bullish news the market cannot sustain a rally. The market is telling you it wants to sell this asset. Try not to get in its way.

Some key releases

As we have already discussed, different releases are important at different times. However, we’ll look at some consistently important ones in this final section.

Interest rates decisions

These can sometimes be unscheduled. However, normally the decisions are announced monthly. The exact process varies for each central bank. Typically there’s a headline decision e.g. maintain 0.75% rate.
You may also see “minutes” of the meeting in which the decision was reached and a vote tally e.g. 7 for maintain, 2 for lower rates. These are always top-tier data releases and have capacity to move the currency a lot.
A hawkish central bank (higher rates) will tend to move a currency higher whilst a dovish central bank (lower rates) will tend to move a currency lower.
A central banker speaking is always a big event

Non farm payrolls

These are released once per month. This is another top-tier release that will move all USD pairs as well as equities.
There are three numbers:
  • The headline number of jobs created (bigger is better)
  • The unemployment rate (smaller is better)
  • Average hourly earnings (depends)
Bear in mind these headline numbers are often off by around 75,000. If a report comes in +/- 25,000 of the forecast, that is probably a non event.
In general a positive response should move the USD higher but check recent price action.
Other countries each have their own unemployment data releases but this is the single most important release.

Surveys

There are various types of surveys: consumer confidence; house price expectations; purchasing managers index etc.
Each one basically asks a group of people if they expect to make more purchases or activity in their area of expertise to rise. There are so many we won’t go into each one here.
A really useful tool is the tradingeconomics.com economic indicators for each country. You can see all the major indicators and an explanation of each plus the historic results.

GDP

Gross Domestic Product is another big release. It is a measure of how much a country’s economy is growing.
In general the market focuses more on ‘advance’ GDP forecasts more than ‘final’ numbers, which are often released at the same time.
This is because the final figures are accurate but by the time they come around the market has already seen all the inputs. The advance figure tends to be less accurate but incorporates new information that the market may not have known before the release.
In general a strong GDP number is good for the domestic currency.

Inflation

Countries tend to release measures of inflation (increase in prices) each month. These releases are important mainly because they may influence the future decisions of the central bank, when setting the interest rate.
See the FX fundamentals section for more details.

Industrial data

Things like factory orders or or inventory levels. These can provide a leading indicator of the strength of the economy.
These numbers can be extremely volatile. This is because a one-off large order can drive the numbers well outside usual levels.
Pay careful attention to previous releases so you have a sense of how noisy each release is and what kind of moves might be expected.

Comments

Often there is really good stuff in the comments/replies. Check out 'squitstoomuch' for some excellent observations on why some news sources are noisy but early (think: Twitter, ZeroHedge). The Softbank story is a good recent example: was in ZeroHedge a day before the FT but the market moved on the FT. Also an interesting comment on mistakes, which definitely happen on breaking news, and can cause massive reversals.

submitted by getmrmarket to Forex [link] [comments]

When will we bottom out?

PART 2 : https://www.reddit.com/wallstreetbets/comments/g0sd44/what_is_the_bottom/
PART 3: https://www.reddit.com/wallstreetbets/comments/g2enz2/why_the_printer_must_continue/
Edit: By popular demand, the too long didn't read is now at the top
TL;DR
SPY 220p 11/20
This will likely be a multi-part series. It should be noted that I am no expert by any means, I'm actually quite new to this, it is just an elementary analysis of patterns in price and time. I am not a financial advisor, and this is not advice for a person to enter trades upon.
The fundamental divide in trading revolves around the question of market structure. Many feel that the market operates totally randomly and its’ behavior cannot be predicted. For the purposes of this DD, we will assume that the market has a structure, but that that structure is not perfect. That market structure naturally generates chart patterns as the market records prices in time. We will analyze an instrument, an exchange traded fund, which represents an index, as opposed to a particular stock. The price patterns of the various stocks in an index are effectively smoothed out. In doing so, a more technical picture arises. Perhaps the most popular of these is the SPDR S&P Standard and Poor 500 Exchange Traded Fund ($SPY).
In trading, little to no concern is given about value of underlying asset. We concerned primarily about liquidity and trading ranges, which are the amount of value fluctuating on a short-term basis, as measured by volatility-implied trading ranges. Fundamental analysis plays a role, however markets often do not react to real-world factors in a logical fashion. Therefore, fundamental analysis is more appropriate for long-term investing.
The fundamental derivatives of a chart are time (x-axis) and price (y-axis). The primary technical indicator is price, as everything else is lagging in the past. Price represents current asking price and incorrectly implementing positions based on price is one of the biggest trading errors.
Markets ordinarily have noise, their tendency to back-and-fill, which must be filtered out for true pattern recognition. That noise does have a utility, however, in allowing traders second chances to enter favorable positions at slightly less favorable entry points. When you have any market with enough liquidity for historical data to record a pattern, then a structure can be divined. The market probes prices as part of an ongoing price-discovery process. Market technicians must sometimes look outside of the technical realm and use visual inspection to ascertain the relevance of certain patterns, using a qualitative eye that recognizes the underlying quantitative nature
Markets rise slower than they correct, however they rise much more than they fall. In the same vein, instruments can only fall to having no worth, whereas they could theoretically grow infinitely and have continued to grow over time. Money in a fiat system is illusory. It is a fundamentally synthetic instrument which has no intrinsic value. Hence, the recent seemingly illogical fluctuations in the market.
According to trade theory, the unending purpose of a market is to create and break price ranges according to the laws of supply and demand. We must determine when to trade based on each market inflection point as defined in price and in time as opposed to abandoning the trend (as the contrarian trading in this sub often does). Time and Price symmetry must be used to be in accordance with the trend. When coupled with a favorable risk to reward ratio, the ability to stay in the market for most of the defined time period, and adherence to risk management rules; the trader has a solid methodology for achieving considerable gains.
We will engage in a longer term market-oriented analysis to avoid any time-focused pressure. The market is technically open 24-hours a day, so trading may be done when the individual is ready, without any pressing need to be constantly alert. Let alone, we can safely project months in advance with relatively high accuracy.
Some important terms to keep in mind:
§ Discrete – terminal points at the extremes of ranges
§ Secondary Discrete – quantified retracement or correction between two discrete
§ Longs (asset appreciation) and shorts (asset depreciation)
- Technical indicators are often considered self-fulfilling prophecies due to mass-market psychology gravitating towards certain common numbers yielded from them. That means a trader must be especially aware of these numbers as they can prognosticate market movements. Often, they are meaningless in the larger picture of things.
§ Volume – derived from the market itself, it is mostly irrelevant. The major problem with volume is that the US market open causes tremendous volume surges eradicating any intrinsic volume analysis. At major highs and lows, the market is typically anemic. Most traders are not active at terminal discretes because of levels of fear. Allows us confidence in time and price symmetry market inflection points, if we observe low volume at a foretold range of values. We can rationalize that an absolute discrete is usually only discovered and anticipated by very few traders. As the general market realizes it, a herd mentality will push the market in the direction favorable to defending it. Volume is also useful for swing trading, as chances for swing’s validity increases if an increase in volume is seen on and after the swing’s activation.
Therefore, due to the relatively high volume on the 23rd of March, we can safely determine that a low WAS NOT reached.
§ VIX – Volatility Index, this technical indicator indicates level of fear by the amount of options-based “insurance” in portfolios. A low VIX environment, less than 20 for the S&P index, indicates a stable market with a possible uptrend. A high VIX, over 20, indicates a possible downtrend. However, it is equally important to see how VIX is changing over time, if it is decreasing or increasing, as that indicates increasing or decreasing fear. Low volatility allows high leverage without risk or rest. Occasionally, markets do rise with high VIX.
As VIX is unusually high, in the forties, we can be confident that a downtrend is imminent.
– Trend definition is highly powerful, cannot be understated. Knowledge of trend logic is enough to be a profitable trader, yet defining a trend is an arduous process. Multiple trends coexist across multiple time frames and across multiple market sectors. Like time structure, it makes the underlying price of the instrument irrelevant. Trend definitions cannot determine the validity of newly formed discretes. Trend becomes apparent when trades based in counter-trend inflection points continue to fail.
Downtrends are defined as an instrument making lower lows and lower highs that are recurrent, additive, qualified swing setups. Downtrends for all instruments are similar, except forex. They are fast and complete much quicker than uptrends. An average downtrend is 18 months, something which we will return to. An uptrend inception occurs when an instrument reaches a point where it fails to make a new low, then that low will be tested. After that, the instrument will either have a deep range retracement or it may take out the low slightly, resulting in a double-bottom. A swing must eventually form.
A simple way to roughly determine trend is to attempt to draw a line from three tops going upwards (uptrend) or a line from three bottoms going downwards (downtrend). It is not possible to correctly draw an uptrend line on the SPY chart, but it is possible to correctly draw a downtrend – indicating that the overall trend is downwards.
Now that we have determined that the overall trend is downwards, the next issue is the question of when SPY will bottom out.
Time is the movement from the past through the present into the future. It is a measurement in quantified intervals. In many ways, our perception of it is a human construct. It is more powerful than price as time may be utilized for a trade regardless of the market inflection point’s price. Were it possible to perfectly understand time, price would be totally irrelevant due to the predictive certainty time affords. Time structure is easier to learn than price, but much more difficult to apply with any accuracy. It is the hardest aspect of trading to learn, but also the most rewarding.
Humans do not have the ability to recognize every time window, however the ability to define market inflection points in terms of time is the single most powerful trading edge. Regardless, price should not be abandoned for time alone. Time structure analysis It is inherently flawed, as such the markets have a fail-safe, which is Price Structure. Even though Time is much more powerful, Price Structure should never be completely ignored. Time is the qualifier for Price and vice versa. Time can fail by tricking traders into counter-trend trading.
Time is a predestined trade quantifier, a filter to slow trades down, as it allows a trader to specifically focus on specific time windows and rest at others. It allows for quantitative measurements to reach deterministic values and is the primary qualifier for trends. Time structure should be utilized before price structure, and it is the primary trade criterion which requires support from price. We can see price structure on a chart, as areas of mathematical support or resistance, but we cannot see time structure.
Time may be used to tell us an exact point in the future where the market will inflect, after Price Theory has been fulfilled. In the present, price objectives based on price theory added to possible future times for market inflection points give us the exact time of market inflection points and price.
Time Structure is repetitions of time or inherent cycles of time, occurring in a methodical way to provide time windows which may be utilized for inflection points. They are not easily recognized and not easily defined by a price chart as measuring and observing time is very exact. Time structure is not a science, yet it does require precise measurements. Nothing is certain or definite. The critical question must be if a particular approach to time structure is currently lucrative or not.
We will complete our analysis of time by measuring it in intervals of 180 bars. Our goal is to determine time windows, when the market will react and when we should pay the most attention. By using time repetitions, the fact that market inflection points occurred at some point in the past and should, therefore, reoccur at some point in the future, we should obtain confidence as to when SPY will reach a market inflection point. Time repetitions are essentially the market’s memory. However, simply measuring the time between two points then trying to extrapolate into the future does not work. Measuring time is not the same as defining time repetitions. We will evaluate past sessions for market inflection points, whether discretes, qualified swings, or intra-range. Then records the times that the market has made highs or lows in a comparable time period to the future one seeks to trade in.
What follows is a time Histogram – A grouping of times which appear close together, then segregated based on that closeness. Time is aligned into combined histogram of repetitions and cycles, however cycles are irrelevant on a daily basis. If trading on an hourly basis, do not use hours.
Yearly Lows: 12/31/2000, 9/21/2001, 10/9/2002, 3/11/2003, 8/2/2004, 4/15/2005, 6/12/2006, 3/5/2007, 11/17/2008, 3/9/2009, 7/2/10, 10/3/11, 1/1/12, 1/1/13, 2/3/14, 9/28/15, 2/8/16, 1/3/17, 12/24/18, 6/3/19
Months: 1, 1, 1, 2, 2, 3, 3, 3, 4, 6, 6, 7, 8, 9, 9, 10, 10, 11, 12, 12
Days: 1, 1, 2, 2, 3, 3, 3, 3, 5, 8, 9, 9, 11, 12, 15, 17, 21, 24, 28, 31
Monthly Lows: 3/23, 2/28, 1/27, 12/3, 11/1, 10/2, 9/3, 8/5, 7/1, 6/3, 5/31, 4/1
Days: 1, 1, 1, 2, 3, 3, 3, 5, 23, 27, 27, 31
Weighted Times are repetitions which appears multiple times within the same list, observed and accentuated once divided into relevant sections of the histogram. They are important in the presently defined trading time period and are similar to a mathematical mode with respect to a series. Phased times are essentially periodical patterns in histograms, though they do not guarantee inflection points*.*
We see that SPY tends to have its lows between three major month clusters: 1-4, primarily March (which has actually occurred already this year), 6-9, averaged out to July, and 10-12, averaged out to November. Following the same methodology, we get the third and tenth days of the month as the likeliest days. However, evaluating the monthly lows for the past year, the end of the month has replaced the average of the tenth. Therefore, we have four primary dates for our histogram.
7/3/20, 7/27/20, and 11/3/20, 11/27/20 .
How do we narrow this group down with any accuracy? Let us average the days together to work with two dates - 7/15/20 and 11/15/20.
The 8.6-Year Armstrong-Princeton Global Economic Confidence model – states that 2.15 year intervals occur between corrections, relevant highs and lows. 2.15 years from the all-time peak discrete is April 14th of 2022. However, we can time-shift to other peaks and troughs to determine a date for this year. If we consider 1/28/2018 as a localized high and apply this model, we get 3/23/20 as a low - strikingly accurate. I have chosen the next localized high, 9/21/2018 to apply the model to. We achieve a date of 11/14/2020.
The average bear market is eighteen months long, giving us a date of August 19th, 2021 for the end of the bear market - roughly speaking.
Therefore, our timeline looks like:
As we move forward in time, our predictions may be less accurate. It is important to keep in mind that this analysis will likely change and become more accurate as we factor in Terry Laundry’s T-Theory, the Bradley Cycle, a more sophisticated analysis of Bull and Bear Market Cycles, the Fundamental Investor Cyclic Approach, and Seasons and Half-Seasons.
I have also assumed that the audience believes in these models, which is not necessary. Anyone with free time may construct histograms and view these time models, determining for themselves what is accurate and what is not. Take a look at 1/28/2008, that localized high, and 2.15 years (1/4th of the sinusoidal wave of the model) later.
The question now is, what prices will SPY reach on 11/14? Where will we be at 7/28? What will happen on 4/14/22?
submitted by aibnsamin1 to wallstreetbets [link] [comments]

Where is Bitcoin Going and When?

Where is Bitcoin Going and When?

The Federal Reserve and the United States government are pumping extreme amounts of money into the economy, already totaling over $484 billion. They are doing so because it already had a goal to inflate the United States Dollar (USD) so that the market can continue to all-time highs. It has always had this goal. They do not care how much inflation goes up by now as we are going into a depression with the potential to totally crash the US economy forever. They believe the only way to save the market from going to zero or negative values is to inflate it so much that it cannot possibly crash that low. Even if the market does not dip that low, inflation serves the interest of powerful people.
The impending crash of the stock market has ramifications for Bitcoin, as, though there is no direct ongoing-correlation between the two, major movements in traditional markets will necessarily affect Bitcoin. According to the Blockchain Center’s Cryptocurrency Correlation Tool, Bitcoin is not correlated with the stock market. However, when major market movements occur, they send ripples throughout the financial ecosystem which necessary affect even ordinarily uncorrelated assets.
Therefore, Bitcoin will reach X price on X date after crashing to a price of X by X date.

Stock Market Crash

The Federal Reserve has caused some serious consternation with their release of ridiculous amounts of money in an attempt to buoy the economy. At face value, it does not seem to have any rationale or logic behind it other than keeping the economy afloat long enough for individuals to profit financially and politically. However, there is an underlying basis to what is going on which is important to understand in order to profit financially.
All markets are functionally price probing systems. They constantly undergo a price-discovery process. In a fiat system, money is an illusory and a fundamentally synthetic instrument with no intrinsic value – similar to Bitcoin. The primary difference between Bitcoin is the underlying technology which provides a slew of benefits that fiat does not. Fiat, however, has an advantage in being able to have the support of powerful nation-states which can use their might to insure the currency’s prosperity.
Traditional stock markets are composed of indices (pl. of index). Indices are non-trading market instruments which are essentially summaries of business values which comprise them. They are continuously recalculated throughout a trading day, and sometimes reflected through tradable instruments such as Exchange Traded Funds or Futures. Indices are weighted by market capitalizations of various businesses.
Price theory essentially states that when a market fails to take out a new low in a given range, it will have an objective to take out the high. When a market fails to take out a new high, it has an objective to make a new low. This is why price-time charts go up and down, as it does this on a second-by-second, minute-by-minute, day-by-day, and even century-by-century basis. Therefore, market indices will always return to some type of bull market as, once a true low is formed, the market will have a price objective to take out a new high outside of its’ given range – which is an all-time high. Instruments can only functionally fall to zero, whereas they can grow infinitely.
So, why inflate the economy so much?
Deflation is disastrous for central banks and markets as it raises the possibility of producing an overall price objective of zero or negative values. Therefore, under a fractional reserve system with a fiat currency managed by a central bank – the goal of the central bank is to depreciate the currency. The dollar is manipulated constantly with the intention of depreciating its’ value.
Central banks have a goal of continued inflated fiat values. They tend to ordinarily contain it at less than ten percent (10%) per annum in order for the psyche of the general populace to slowly adjust price increases. As such, the markets are divorced from any other logic. Economic policy is the maintenance of human egos, not catering to fundamental analysis. Gross Domestic Product (GDP) growth is well-known not to be a measure of actual growth or output. It is a measure of increase in dollars processed. Banks seek to produce raising numbers which make society feel like it is growing economically, making people optimistic. To do so, the currency is inflated, though inflation itself does not actually increase growth. When society is optimistic, it spends and engages in business – resulting in actual growth. It also encourages people to take on credit and debts, creating more fictional fiat.
Inflation is necessary for markets to continue to reach new heights, generating positive emotional responses from the populace, encouraging spending, encouraging debt intake, further inflating the currency, and increasing the sale of government bonds. The fiat system only survives by generating more imaginary money on a regular basis.
Bitcoin investors may profit from this by realizing that stock investors as a whole always stand to profit from the market so long as it is managed by a central bank and does not collapse entirely. If those elements are filled, it has an unending price objective to raise to new heights. It also allows us to realize that this response indicates that the higher-ups believe that the economy could crash in entirety, and it may be wise for investors to have multiple well-thought-out exit strategies.

Economic Analysis of Bitcoin

The reason why the Fed is so aggressively inflating the economy is due to fears that it will collapse forever or never rebound. As such, coupled with a global depression, a huge demand will appear for a reserve currency which is fundamentally different than the previous system. Bitcoin, though a currency or asset, is also a market. It also undergoes a constant price-probing process. Unlike traditional markets, Bitcoin has the exact opposite goal. Bitcoin seeks to appreciate in value and not depreciate. This has a quite different affect in that Bitcoin could potentially become worthless and have a price objective of zero.
Bitcoin was created in 2008 by a now famous mysterious figure known as Satoshi Nakamoto and its’ open source code was released in 2009. It was the first decentralized cryptocurrency to utilize a novel protocol known as the blockchain. Up to one megabyte of data may be sent with each transaction. It is decentralized, anonymous, transparent, easy to set-up, and provides myriad other benefits. Bitcoin is not backed up by anything other than its’ own technology.
Bitcoin is can never be expected to collapse as a framework, even were it to become worthless. The stock market has the potential to collapse in entirety, whereas, as long as the internet exists, Bitcoin will be a functional system with a self-authenticating framework. That capacity to persist regardless of the actual price of Bitcoin and the deflationary nature of Bitcoin means that it has something which fiat does not – inherent value.
Bitcoin is based on a distributed database known as the “blockchain.” Blockchains are essentially decentralized virtual ledger books, replete with pages known as “blocks.” Each page in a ledger is composed of paragraph entries, which are the actual transactions in the block.
Blockchains store information in the form of numerical transactions, which are just numbers. We can consider these numbers digital assets, such as Bitcoin. The data in a blockchain is immutable and recorded only by consensus-based algorithms. Bitcoin is cryptographic and all transactions are direct, without intermediary, peer-to-peer.
Bitcoin does not require trust in a central bank. It requires trust on the technology behind it, which is open-source and may be evaluated by anyone at any time. Furthermore, it is impossible to manipulate as doing so would require all of the nodes in the network to be hacked at once – unlike the stock market which is manipulated by the government and “Market Makers”. Bitcoin is also private in that, though the ledge is openly distributed, it is encrypted. Bitcoin’s blockchain has one of the greatest redundancy and information disaster recovery systems ever developed.
Bitcoin has a distributed governance model in that it is controlled by its’ users. There is no need to trust a payment processor or bank, or even to pay fees to such entities. There are also no third-party fees for transaction processing. As the ledge is immutable and transparent it is never possible to change it – the data on the blockchain is permanent. The system is not easily susceptible to attacks as it is widely distributed. Furthermore, as users of Bitcoin have their private keys assigned to their transactions, they are virtually impossible to fake. No lengthy verification, reconciliation, nor clearing process exists with Bitcoin.
Bitcoin is based on a proof-of-work algorithm. Every transaction on the network has an associated mathetical “puzzle”. Computers known as miners compete to solve the complex cryptographic hash algorithm that comprises that puzzle. The solution is proof that the miner engaged in sufficient work. The puzzle is known as a nonce, a number used only once. There is only one major nonce at a time and it issues 12.5 Bitcoin. Once it is solved, the fact that the nonce has been solved is made public.
A block is mined on average of once every ten minutes. However, the blockchain checks every 2,016,000 minutes (approximately four years) if 201,600 blocks were mined. If it was faster, it increases difficulty by half, thereby deflating Bitcoin. If it was slower, it decreases, thereby inflating Bitcoin. It will continue to do this until zero Bitcoin are issued, projected at the year 2140. On the twelfth of May, 2020, the blockchain will halve the amount of Bitcoin issued when each nonce is guessed. When Bitcoin was first created, fifty were issued per block as a reward to miners. 6.25 BTC will be issued from that point on once each nonce is solved.
Unlike fiat, Bitcoin is a deflationary currency. As BTC becomes scarcer, demand for it will increase, also raising the price. In this, BTC is similar to gold. It is predictable in its’ output, unlike the USD, as it is based on a programmed supply. We can predict BTC’s deflation and inflation almost exactly, if not exactly. Only 21 million BTC will ever be produced, unless the entire network concedes to change the protocol – which is highly unlikely.
Some of the drawbacks to BTC include congestion. At peak congestion, it may take an entire day to process a Bitcoin transaction as only three to five transactions may be processed per second. Receiving priority on a payment may cost up to the equivalent of twenty dollars ($20). Bitcoin mining consumes enough energy in one day to power a single-family home for an entire week.

Trading or Investing?

The fundamental divide in trading revolves around the question of market structure. Many feel that the market operates totally randomly and its’ behavior cannot be predicted. For the purposes of this article, we will assume that the market has a structure, but that that structure is not perfect. That market structure naturally generates chart patterns as the market records prices in time. In order to determine when the stock market will crash, causing a major decline in BTC price, we will analyze an instrument, an exchange traded fund, which represents an index, as opposed to a particular stock. The price patterns of the various stocks in an index are effectively smoothed out. In doing so, a more technical picture arises. Perhaps the most popular of these is the SPDR S&P Standard and Poor 500 Exchange Traded Fund ($SPY).
In trading, little to no concern is given about value of underlying asset. We are concerned primarily about liquidity and trading ranges, which are the amount of value fluctuating on a short-term basis, as measured by volatility-implied trading ranges. Fundamental analysis plays a role, however markets often do not react to real-world factors in a logical fashion. Therefore, fundamental analysis is more appropriate for long-term investing.
The fundamental derivatives of a chart are time (x-axis) and price (y-axis). The primary technical indicator is price, as everything else is lagging in the past. Price represents current asking price and incorrectly implementing positions based on price is one of the biggest trading errors.
Markets and currencies ordinarily have noise, their tendency to back-and-fill, which must be filtered out for true pattern recognition. That noise does have a utility, however, in allowing traders second chances to enter favorable positions at slightly less favorable entry points. When you have any market with enough liquidity for historical data to record a pattern, then a structure can be divined. The market probes prices as part of an ongoing price-discovery process. Market technicians must sometimes look outside of the technical realm and use visual inspection to ascertain the relevance of certain patterns, using a qualitative eye that recognizes the underlying quantitative nature
Markets and instruments rise slower than they correct, however they rise much more than they fall. In the same vein, instruments can only fall to having no worth, whereas they could theoretically grow infinitely and have continued to grow over time. Money in a fiat system is illusory. It is a fundamentally synthetic instrument which has no intrinsic value. Hence, the recent seemingly illogical fluctuations in the market.
According to trade theory, the unending purpose of a market or instrument is to create and break price ranges according to the laws of supply and demand. We must determine when to trade based on each market inflection point as defined in price and in time as opposed to abandoning the trend (as the contrarian trading in this sub often does). Time and Price symmetry must be used to be in accordance with the trend. When coupled with a favorable risk to reward ratio, the ability to stay in the market for most of the defined time period, and adherence to risk management rules; the trader has a solid methodology for achieving considerable gains.
We will engage in a longer term market-oriented analysis to avoid any time-focused pressure. The Bitcoin market is open twenty-four-hours a day, so trading may be done when the individual is ready, without any pressing need to be constantly alert. Let alone, we can safely project months in advance with relatively high accuracy. Bitcoin is an asset which an individual can both trade and invest, however this article will be focused on trading due to the wide volatility in BTC prices over the short-term.

Technical Indicator Analysis of Bitcoin

Technical indicators are often considered self-fulfilling prophecies due to mass-market psychology gravitating towards certain common numbers yielded from them. They are also often discounted when it comes to BTC. That means a trader must be especially aware of these numbers as they can prognosticate market movements. Often, they are meaningless in the larger picture of things.
  • Volume – derived from the market itself, it is mostly irrelevant. The major problem with volume for stocks is that the US market open causes tremendous volume surges eradicating any intrinsic volume analysis. This does not occur with BTC, as it is open twenty-four-seven. At major highs and lows, the market is typically anemic. Most traders are not active at terminal discretes (peaks and troughs) because of levels of fear. Volume allows us confidence in time and price symmetry market inflection points, if we observe low volume at a foretold range of values. We can rationalize that an absolute discrete is usually only discovered and anticipated by very few traders. As the general market realizes it, a herd mentality will push the market in the direction favorable to defending it. Volume is also useful for swing trading, as chances for swing’s validity increases if an increase in volume is seen on and after the swing’s activation. Volume is steadily decreasing. Lows and highs are reached when volume is lower.
Therefore, due to the relatively high volume on the 12th of March, we can safely determine that a low for BTC was not reached.
  • VIX – Volatility Index, this technical indicator indicates level of fear by the amount of options-based “insurance” in portfolios. A low VIX environment, less than 20 for the S&P index, indicates a stable market with a possible uptrend. A high VIX, over 20, indicates a possible downtrend. VIX is essentially useless for BTC as BTC-based options do not exist. It allows us to predict the market low for $SPY, which will have an indirect impact on BTC in the short term, likely leading to the yearly low. However, it is equally important to see how VIX is changing over time, if it is decreasing or increasing, as that indicates increasing or decreasing fear. Low volatility allows high leverage without risk or rest. Occasionally, markets do rise with high VIX.
As VIX is unusually high, in the forties, we can be confident that a downtrend for the S&P 500 is imminent.
  • RSI (Relative Strength Index): The most important technical indicator, useful for determining highs and lows when time symmetry is not availing itself. Sometimes analysis of RSI can conflict in different time frames, easiest way to use it is when it is at extremes – either under 30 or over 70. Extremes can be used for filtering highs or lows based on time-and-price window calculations. Highly instructive as to major corrective clues and indicative of continued directional movement. Must determine if longer-term RSI values find support at same values as before. It is currently at 73.56.
  • Secondly, RSI may be used as a high or low filter, to observe the level that short-term RSI reaches in counter-trend corrections. Repetitions based on market movements based on RSI determine how long a trade should be held onto. Once a short term RSI reaches an extreme and stay there, the other RSI’s should gradually reach the same extremes. Once all RSI’s are at extreme highs, a trend confirmation should occur and RSI’s should drop to their midpoint.

Trend Definition Analysis of Bitcoin

Trend definition is highly powerful, cannot be understated. Knowledge of trend logic is enough to be a profitable trader, yet defining a trend is an arduous process. Multiple trends coexist across multiple time frames and across multiple market sectors. Like time structure, it makes the underlying price of the instrument irrelevant. Trend definitions cannot determine the validity of newly formed discretes. Trend becomes apparent when trades based in counter-trend inflection points continue to fail.
Downtrends are defined as an instrument making lower lows and lower highs that are recurrent, additive, qualified swing setups. Downtrends for all instruments are similar, except forex. They are fast and complete much quicker than uptrends. An average downtrend is 18 months, something which we will return to. An uptrend inception occurs when an instrument reaches a point where it fails to make a new low, then that low will be tested. After that, the instrument will either have a deep range retracement or it may take out the low slightly, resulting in a double-bottom. A swing must eventually form.
A simple way to roughly determine trend is to attempt to draw a line from three tops going upwards (uptrend) or a line from three bottoms going downwards (downtrend). It is not possible to correctly draw a downtrend line on the BTC chart, but it is possible to correctly draw an uptrend – indicating that the overall trend is downwards. The only mitigating factor is the impending stock market crash.

Time Symmetry Analysis of Bitcoin

Time is the movement from the past through the present into the future. It is a measurement in quantified intervals. In many ways, our perception of it is a human construct. It is more powerful than price as time may be utilized for a trade regardless of the market inflection point’s price. Were it possible to perfectly understand time, price would be totally irrelevant due to the predictive certainty time affords. Time structure is easier to learn than price, but much more difficult to apply with any accuracy. It is the hardest aspect of trading to learn, but also the most rewarding.
Humans do not have the ability to recognize every time window, however the ability to define market inflection points in terms of time is the single most powerful trading edge. Regardless, price should not be abandoned for time alone. Time structure analysis It is inherently flawed, as such the markets have a fail-safe, which is Price Structure. Even though Time is much more powerful, Price Structure should never be completely ignored. Time is the qualifier for Price and vice versa. Time can fail by tricking traders into counter-trend trading.
Time is a predestined trade quantifier, a filter to slow trades down, as it allows a trader to specifically focus on specific time windows and rest at others. It allows for quantitative measurements to reach deterministic values and is the primary qualifier for trends. Time structure should be utilized before price structure, and it is the primary trade criterion which requires support from price. We can see price structure on a chart, as areas of mathematical support or resistance, but we cannot see time structure.
Time may be used to tell us an exact point in the future where the market will inflect, after Price Theory has been fulfilled. In the present, price objectives based on price theory added to possible future times for market inflection points give us the exact time of market inflection points and price.
Time Structure is repetitions of time or inherent cycles of time, occurring in a methodical way to provide time windows which may be utilized for inflection points. They are not easily recognized and not easily defined by a price chart as measuring and observing time is very exact. Time structure is not a science, yet it does require precise measurements. Nothing is certain or definite. The critical question must be if a particular approach to time structure is currently lucrative or not.
We will measure it in intervals of 180 bars. Our goal is to determine time windows, when the market will react and when we should pay the most attention. By using time repetitions, the fact that market inflection points occurred at some point in the past and should, therefore, reoccur at some point in the future, we should obtain confidence as to when SPY will reach a market inflection point. Time repetitions are essentially the market’s memory. However, simply measuring the time between two points then trying to extrapolate into the future does not work. Measuring time is not the same as defining time repetitions. We will evaluate past sessions for market inflection points, whether discretes, qualified swings, or intra-range. Then records the times that the market has made highs or lows in a comparable time period to the future one seeks to trade in.
What follows is a time Histogram – A grouping of times which appear close together, then segregated based on that closeness. Time is aligned into combined histogram of repetitions and cycles, however cycles are irrelevant on a daily basis. If trading on an hourly basis, do not use hours.
  • Yearly Lows (last seven years): 1/1/13, 4/10/14, 1/15/15, 1/17/16, 1/1/17, 12/15/18, 2/6/19
  • Monthly Mode: 1, 1, 1, 1, 2, 4, 12
  • Daily Mode: 1, 1, 6, 10, 15, 15, 17
  • Monthly Lows (for the last year): 3/12/20 (10:00pm), 2/28/20 (7:09am), 1/2/20 (8:09pm), 12/18/19 (8:00am), 11/25/19 (1:00am), 10/24/19 (2:59am), 9/30/19 (2:59am), 8/29,19 (4:00am), 7/17/19 (7:59am), 6/4/19 (5:59pm), 5/1/19 (12:00am), 4/1/19 (12:00am)
  • Daily Lows Mode for those Months: 1, 1, 2, 4, 12, 17, 18, 24, 25, 28, 29, 30
  • Hourly Lows Mode for those Months (Military time): 0100, 0200, 0200, 0400, 0700, 0700, 0800, 1200, 1200, 1700, 2000, 2200
  • Minute Lows Mode for those Months: 00, 00, 00, 00, 00, 00, 09, 09, 59, 59, 59, 59
  • Day of the Week Lows (last twenty-six weeks):
Weighted Times are repetitions which appears multiple times within the same list, observed and accentuated once divided into relevant sections of the histogram. They are important in the presently defined trading time period and are similar to a mathematical mode with respect to a series. Phased times are essentially periodical patterns in histograms, though they do not guarantee inflection points
Evaluating the yearly lows, we see that BTC tends to have its lows primarily at the beginning of every year, with a possibility of it being at the end of the year. Following the same methodology, we get the middle of the month as the likeliest day. However, evaluating the monthly lows for the past year, the beginning and end of the month are more likely for lows.
Therefore, we have two primary dates from our histogram.
1/1/21, 1/15/21, and 1/29/21
2:00am, 8:00am, 12:00pm, or 10:00pm
In fact, the high for this year was February the 14th, only thirty days off from our histogram calculations.
The 8.6-Year Armstrong-Princeton Global Economic Confidence model states that 2.15 year intervals occur between corrections, relevant highs and lows. 2.15 years from the all-time peak discrete is February 9, 2020 – a reasonably accurate depiction of the low for this year (which was on 3/12/20). (Taking only the Armstrong model into account, the next high should be Saturday, April 23, 2022). Therefore, the Armstrong model indicates that we have actually bottomed out for the year!
Bear markets cannot exist in perpetuity whereas bull markets can. Bear markets will eventually have price objectives of zero, whereas bull markets can increase to infinity. It can occur for individual market instruments, but not markets as a whole. Since bull markets are defined by low volatility, they also last longer. Once a bull market is indicated, the trader can remain in a long position until a new high is reached, then switch to shorts. The average bear market is eighteen months long, giving us a date of August 19th, 2021 for the end of this bear market – roughly speaking. They cannot be shorter than fifteen months for a central-bank controlled market, which does not apply to Bitcoin. (Otherwise, it would continue until Sunday, September 12, 2021.) However, we should expect Bitcoin to experience its’ exponential growth after the stock market re-enters a bull market.
Terry Laundy’s T-Theory implemented by measuring the time of an indicator from peak to trough, then using that to define a future time window. It is similar to an head-and-shoulders pattern in that it is the process of forming the right side from a synthetic technical indicator. If the indicator is making continued lows, then time is recalculated for defining the right side of the T. The date of the market inflection point may be a price or indicator inflection date, so it is not always exactly useful. It is better to make us aware of possible market inflection points, clustered with other data. It gives us an RSI low of May, 9th 2020.
The Bradley Cycle is coupled with volatility allows start dates for campaigns or put options as insurance in portfolios for stocks. However, it is also useful for predicting market moves instead of terminal dates for discretes. Using dates which correspond to discretes, we can see how those dates correspond with changes in VIX.
Therefore, our timeline looks like:
  • 2/14/20 – yearly high ($10372 USD)
  • 3/12/20 – yearly low thus far ($3858 USD)
  • 5/9/20 – T-Theory true yearly low (BTC between 4863 and 3569)
  • 5/26/20 – hashrate difficulty halvening
  • 11/14/20 – stock market low
  • 1/15/21 – yearly low for BTC, around $8528
  • 8/19/21 – end of stock bear market
  • 11/26/21 – eighteen months from halvening, average peak from halvenings (BTC begins rising from $3000 area to above $23,312)
  • 4/23/22 – all-time high
Taken from my blog: http://aliamin.info/2020/
submitted by aibnsamin1 to Bitcoin [link] [comments]

The Next Crypto Wave: The Rise of Stablecoins and its Entry to the U.S. Dollar Market

The Next Crypto Wave: The Rise of Stablecoins and its Entry to the U.S. Dollar Market

Author: Christian Hsieh, CEO of Tokenomy
This paper examines some explanations for the continual global market demand for the U.S. dollar, the rise of stablecoins, and the utility and opportunities that crypto dollars can offer to both the cryptocurrency and traditional markets.
The U.S. dollar, dominant in world trade since the establishment of the 1944 Bretton Woods System, is unequivocally the world’s most demanded reserve currency. Today, more than 61% of foreign bank reserves and nearly 40% of the entire world’s debt is denominated in U.S. dollars1.
However, there is a massive supply and demand imbalance in the U.S. dollar market. On the supply side, central banks throughout the world have implemented more than a decade-long accommodative monetary policy since the 2008 global financial crisis. The COVID-19 pandemic further exacerbated the need for central banks to provide necessary liquidity and keep staggering economies moving. While the Federal Reserve leads the effort of “money printing” and stimulus programs, the current money supply still cannot meet the constant high demand for the U.S. dollar2. Let us review some of the reasons for this constant dollar demand from a few economic fundamentals.

Demand for U.S. Dollars

Firstly, most of the world’s trade is denominated in U.S. dollars. Chief Economist of the IMF, Gita Gopinath, has compiled data reflecting that the U.S. dollar’s share of invoicing was 4.7 times larger than America’s share of the value of imports, and 3.1 times its share of world exports3. The U.S. dollar is the dominant “invoicing currency” in most developing countries4.

https://preview.redd.it/d4xalwdyz8p51.png?width=535&format=png&auto=webp&s=9f0556c6aa6b29016c9b135f3279e8337dfee2a6

https://preview.redd.it/wucg40kzz8p51.png?width=653&format=png&auto=webp&s=71257fec29b43e0fc0df1bf04363717e3b52478f
This U.S. dollar preference also directly impacts the world’s debt. According to the Bank of International Settlements, there is over $67 trillion in U.S. dollar denominated debt globally, and borrowing outside of the U.S. accounted for $12.5 trillion in Q1 20205. There is an immense demand for U.S. dollars every year just to service these dollar debts. The annual U.S. dollar buying demand is easily over $1 trillion assuming the borrowing cost is at 1.5% (1 year LIBOR + 1%) per year, a conservative estimate.

https://preview.redd.it/6956j6f109p51.png?width=487&format=png&auto=webp&s=ccea257a4e9524c11df25737cac961308b542b69
Secondly, since the U.S. has a much stronger economy compared to its global peers, a higher return on investments draws U.S. dollar demand from everywhere in the world, to invest in companies both in the public and private markets. The U.S. hosts the largest stock markets in the world with more than $33 trillion in public market capitalization (combined both NYSE and NASDAQ)6. For the private market, North America’s total share is well over 60% of the $6.5 trillion global assets under management across private equity, real assets, and private debt investments7. The demand for higher quality investments extends to the fixed income market as well. As countries like Japan and Switzerland currently have negative-yielding interest rates8, fixed income investors’ quest for yield in the developed economies leads them back to the U.S. debt market. As of July 2020, there are $15 trillion worth of negative-yielding debt securities globally (see chart). In comparison, the positive, low-yielding U.S. debt remains a sound fixed income strategy for conservative investors in uncertain market conditions.

Source: Bloomberg
Last, but not least, there are many developing economies experiencing failing monetary policies, where hyperinflation has become a real national disaster. A classic example is Venezuela, where the currency Bolivar became practically worthless as the inflation rate skyrocketed to 10,000,000% in 20199. The recent Beirut port explosion in Lebanon caused a sudden economic meltdown and compounded its already troubled financial market, where inflation has soared to over 112% year on year10. For citizens living in unstable regions such as these, the only reliable store of value is the U.S. dollar. According to the Chainalysis 2020 Geography of Cryptocurrency Report, Venezuela has become one of the most active cryptocurrency trading countries11. The demand for cryptocurrency surges as a flight to safety mentality drives Venezuelans to acquire U.S. dollars to preserve savings that they might otherwise lose. The growth for cryptocurrency activities in those regions is fueled by these desperate citizens using cryptocurrencies as rails to access the U.S. dollar, on top of acquiring actual Bitcoin or other underlying crypto assets.

The Rise of Crypto Dollars

Due to the highly volatile nature of cryptocurrencies, USD stablecoin, a crypto-powered blockchain token that pegs its value to the U.S. dollar, was introduced to provide stable dollar exposure in the crypto trading sphere. Tether is the first of its kind. Issued in 2014 on the bitcoin blockchain (Omni layer protocol), under the token symbol USDT, it attempts to provide crypto traders with a stable settlement currency while they trade in and out of various crypto assets. The reason behind the stablecoin creation was to address the inefficient and burdensome aspects of having to move fiat U.S. dollars between the legacy banking system and crypto exchanges. Because one USDT is theoretically backed by one U.S. dollar, traders can use USDT to trade and settle to fiat dollars. It was not until 2017 that the majority of traders seemed to realize Tether’s intended utility and started using it widely. As of April 2019, USDT trading volume started exceeding the trading volume of bitcoina12, and it now dominates the crypto trading sphere with over $50 billion average daily trading volume13.

https://preview.redd.it/3vq7v1jg09p51.png?width=700&format=png&auto=webp&s=46f11b5f5245a8c335ccc60432873e9bad2eb1e1
An interesting aspect of USDT is that although the claimed 1:1 backing with U.S. dollar collateral is in question, and the Tether company is in reality running fractional reserves through a loose offshore corporate structure, Tether’s trading volume and adoption continues to grow rapidly14. Perhaps in comparison to fiat U.S. dollars, which is not really backed by anything, Tether still has cash equivalents in reserves and crypto traders favor its liquidity and convenience over its lack of legitimacy. For those who are concerned about Tether’s solvency, they can now purchase credit default swaps for downside protection15. On the other hand, USDC, the more compliant contender, takes a distant second spot with total coin circulation of $1.8 billion, versus USDT at $14.5 billion (at the time of publication). It is still too early to tell who is the ultimate leader in the stablecoin arena, as more and more stablecoins are launching to offer various functions and supporting mechanisms. There are three main categories of stablecoin: fiat-backed, crypto-collateralized, and non-collateralized algorithm based stablecoins. Most of these are still at an experimental phase, and readers can learn more about them here. With the continuous innovation of stablecoin development, the utility stablecoins provide in the overall crypto market will become more apparent.

Institutional Developments

In addition to trade settlement, stablecoins can be applied in many other areas. Cross-border payments and remittances is an inefficient market that desperately needs innovation. In 2020, the average cost of sending money across the world is around 7%16, and it takes days to settle. The World Bank aims to reduce remittance fees to 3% by 2030. With the implementation of blockchain technology, this cost could be further reduced close to zero.
J.P. Morgan, the largest bank in the U.S., has created an Interbank Information Network (IIN) with 416 global Institutions to transform the speed of payment flows through its own JPM Coin, another type of crypto dollar17. Although people argue that JPM Coin is not considered a cryptocurrency as it cannot trade openly on a public blockchain, it is by far the largest scale experiment with all the institutional participants trading within the “permissioned” blockchain. It might be more accurate to refer to it as the use of distributed ledger technology (DLT) instead of “blockchain” in this context. Nevertheless, we should keep in mind that as J.P. Morgan currently moves $6 trillion U.S. dollars per day18, the scale of this experiment would create a considerable impact in the international payment and remittance market if it were successful. Potentially the day will come when regulated crypto exchanges become participants of IIN, and the link between public and private crypto assets can be instantly connected, unlocking greater possibilities in blockchain applications.
Many central banks are also in talks about developing their own central bank digital currency (CBDC). Although this idea was not new, the discussion was brought to the forefront due to Facebook’s aggressive Libra project announcement in June 2019 and the public attention that followed. As of July 2020, at least 36 central banks have published some sort of CBDC framework. While each nation has a slightly different motivation behind its currency digitization initiative, ranging from payment safety, transaction efficiency, easy monetary implementation, or financial inclusion, these central banks are committed to deploying a new digital payment infrastructure. When it comes to the technical architectures, research from BIS indicates that most of the current proofs-of-concept tend to be based upon distributed ledger technology (permissioned blockchain)19.

https://preview.redd.it/lgb1f2rw19p51.png?width=700&format=png&auto=webp&s=040bb0deed0499df6bf08a072fd7c4a442a826a0
These institutional experiments are laying an essential foundation for an improved global payment infrastructure, where instant and frictionless cross-border settlements can take place with minimal costs. Of course, the interoperability of private DLT tokens and public blockchain stablecoins has yet to be explored, but the innovation with both public and private blockchain efforts could eventually merge. This was highlighted recently by the Governor of the Bank of England who stated that “stablecoins and CBDC could sit alongside each other20”. One thing for certain is that crypto dollars (or other fiat-linked digital currencies) are going to play a significant role in our future economy.

Future Opportunities

There is never a dull moment in the crypto sector. The industry narratives constantly shift as innovation continues to evolve. Twelve years since its inception, Bitcoin has evolved from an abstract subject to a familiar concept. Its role as a secured, scarce, decentralized digital store of value has continued to gain acceptance, and it is well on its way to becoming an investable asset class as a portfolio hedge against asset price inflation and fiat currency depreciation. Stablecoins have proven to be useful as proxy dollars in the crypto world, similar to how dollars are essential in the traditional world. It is only a matter of time before stablecoins or private digital tokens dominate the cross-border payments and global remittances industry.
There are no shortages of hypes and experiments that draw new participants into the crypto space, such as smart contracts, new blockchains, ICOs, tokenization of things, or the most recent trends on DeFi tokens. These projects highlight the possibilities for a much more robust digital future, but the market also needs time to test and adopt. A reliable digital payment infrastructure must be built first in order to allow these experiments to flourish.
In this paper we examined the historical background and economic reasons for the U.S. dollar’s dominance in the world, and the probable conclusion is that the demand for U.S. dollars will likely continue, especially in the middle of a global pandemic, accompanied by a worldwide economic slowdown. The current monetary system is far from perfect, but there are no better alternatives for replacement at least in the near term. Incremental improvements are being made in both the public and private sectors, and stablecoins have a definite role to play in both the traditional and the new crypto world.
Thank you.

Reference:
[1] How the US dollar became the world’s reserve currency, Investopedia
[2] The dollar is in high demand, prone to dangerous appreciation, The Economist
[3] Dollar dominance in trade and finance, Gita Gopinath
[4] Global trades dependence on dollars, The Economist & IMF working papers
[5] Total credit to non-bank borrowers by currency of denomination, BIS
[6] Biggest stock exchanges in the world, Business Insider
[7] McKinsey Global Private Market Review 2020, McKinsey & Company
[8] Central banks current interest rates, Global Rates
[9] Venezuela hyperinflation hits 10 million percent, CNBC
[10] Lebanon inflation crisis, Reuters
[11] Venezuela cryptocurrency market, Chainalysis
[12] The most used cryptocurrency isn’t Bitcoin, Bloomberg
[13] Trading volume of all crypto assets, coinmarketcap.com
[14] Tether US dollar peg is no longer credible, Forbes
[15] New crypto derivatives let you bet on (or against) Tether’s solvency, Coindesk
[16] Remittance Price Worldwide, The World Bank
[17] Interbank Information Network, J.P. Morgan
[18] Jamie Dimon interview, CBS News
[19] Rise of the central bank digital currency, BIS
[20] Speech by Andrew Bailey, 3 September 2020, Bank of England
submitted by Tokenomy to tokenomyofficial [link] [comments]

What Is The Difference Between Volume And Volatility ... INR Volatility ~ Hedging Strategy for Exporters Volatility VS Liquidity for Traders - YouTube [new] Volatility Factor EA 2.0 Review Demo VIX Index Explained  Options Trading Guide - YouTube 3 Indicators to Measure Market Volatility 📈 - YouTube What is Chaikin's Volatility? - YouTube The Volatility Index (VIX) Explained - YouTube Was ist Volatilität, Vola? Einfach erklärt (Trading Definition) 3 Volatility Indicators To Help You Trade Effectively ...

Volatility is regarded by Forex traders as one of the most important informational indicators for decisions on opening or closure of currency positions. It could be appraised through following financial indicators: Bollinger Bands, Commodity Channel Index, Average True Range. All of them are integrated in popular trading platforms. Additional important index is RVI (Relative Volatility Index ... Wir sollten zur Kenntnis nehmen, dass sich die Volatilität per Definition im Laufe der Zeit ändert und keine Konstante ist. Volatilität ist relativ. Wenn Sie jemals selbst am Devisenmarkt gehandelt oder zumindest Preisbewegungen "von der Seitenlinie" aus beobachtet haben, dann haben Sie vermutlich bemerkt, dass sich die Preise auf dem Chart nicht-linear bewegen. Manchmal macht der Preis ein Die Volatility Protection Settings für das gesamte Handelskonto von Admiral Markets bieten vor allem den aktiven Tradern eine enorme Hilfe für den Handel in allen Marktlagen: So können auch hochvolatile Zeiten an Schrecken verlieren, wenn die Kontoeinstellungen angemessen genutzt werden. Die generellen Marktrisiken bleiben bestehen, aber durch die individuellen Einstellungen werden viele ... Volatilität Definition. Was bedeutet Volatilität? Volatilität ist die statistische Messung der Kursschwankungen über einen bestimmten Zeitraum. Diese Methode ist ein gängiges Bewertungsverfahren des Kursrisikos eines Basiswertes - je höher die Volatilität, desto höher das Risiko beim Handeln des Basiswertes. Volatile Märkte zeichnen enorm schnelle Kursbewegungen und ein hohes ... Volatility Definition. What is Volatility? Volatility is a statistical measure of the dispersion of returns for a given security or market index. In most cases, the higher the volatility, the riskier the security. Volatility can either be measured by using the standard deviation or variance between returns from that same security or market index. In the securities markets, volatility is often ... DailyFX stellt Neuigkeiten zu Forex und technische Analysen, die sich auf Trends beziehen, die die globalen Währungsmärkte beeinflussen, zur Verfügung. James Stanley , Strategist ... Volatility is something that we can use when looking for good breakout trade opportunities. Volatility measures the overall price fluctuations over a certain time and this information can be used to detect potential breakouts. There are a few indicators that can help you gauge a pair’s current volatility. Using these indicators can help you tremendously when looking for breakout ... Volatility definition. Forex trading involves risk. Losses can exceed deposits . What is volatility? Volatility is a statistical measure of the amount an asset's price changes during a given period of time. It has become a popular way of assessing how risky an asset is - higher the level of volatility, the more risk is associated with the asset. Volatile markets are characterized by extremely ... Definition: Volatilität Kurse im Börsenhandel unterliegen einem ständigen Auf und Ab. Das gilt zum Beispiel für Aktien , Anleihen , Derivate , Devisen , Edelmetalle oder Rohstoffe . The simplest definition of Forex volatility is the currency rate’s price range — the difference between the period’s High and Low rates. The wider is the range, the bigger is the difference, the more volatile the currency pair is. For example, in our recent study of FX pairs’ trendedness, we used

[index] [101] [22137] [7477] [4280] [7272] [14529] [6718] [2140] [18374] [28035]

What Is The Difference Between Volume And Volatility ...

Volatility Indicators http://www.netpicks.com/volatility-indicators/ - Read more Volatility Indicators are an important part of any trading strategy that rel... volatility factor definition forex diamond best forex ea volatility factor volatility factor model volatility factor definition volatility factor ea volatility factor forex robot volatility factor ... Click here to Subscribe - https://www.youtube.com/OptionAlpha?sub_confirmation=1 Are you familiar with stock trading and the stock market but want to learn h... Volatility VS Liquidity for Traders covering a hugely important topic. Check out the full article here: http://www.envisionchart.com/volatility-vs-liquidity/... Risikohinweis: Handel mit derivativen Produkten wie Futures, Optionen, CFD’s, Forex und Zertifikaten enthält ein erhebliches Risiko. Diese Produkte sind nicht für jeden Anleger geeignet ... The CBOE's VIX Index is one of the most commonly watched indices in the market, as it tracks the 30-day implied volatility of options on the S&P 500 Index (S... Welcome to the Investors Trading Academy talking glossary of financial terms and events. Our word of the day is “Chaikin's Volatility”. Chaikin's Volatility ... The Volatility Index (VIX) Explained A very important market indicator within the world of the stock market is the volatility index, or better known as "the ... @ Mates ~ This video would let you know about appropriate Hedging Strategy for Exporters having Foreign Currency Accounts Receivables however cost is in INR. This video covers usage of Options ... How to Measure Market Volatility. http://www.financial-spread-betting.com/course/technical-analysis.html PLEASE LIKE AND SHARE THIS VIDEO SO WE CAN DO MORE! ...

http://binaryoptiontrade.fiddgepuserli.tk